
ARTICLE 2

Understanding SQL

Underlying every query in Microsoft Offi ce Access 2007 is the SQL database com-
mand language. Although you can design most queries using the simple Offi ce 

Access 2007 design grid (or the view, function, or stored procedure designer in an 
Access project fi le), Access stores every query you design as an SQL command. When 
you use one of the designers, Access creates the SQL for you. However, for advanced 
types of queries that use the results of a second query as a comparison condition, you 
need to know SQL in order to defi ne the second query (called a subquery). Also, you 
cannot use the design grid to construct all types of queries available in the product; 
you must use SQL for some of them. As you learned in Chapter 27, “Building Queries 
in an Access Project,” understanding SQL is essential to building queries in Microsoft 
SQL Server.

How to Use This Article

This article contains two major sections: SQL SELECT queries and SQL action queries. 

Within the fi rst section, you can fi nd keywords used in the SQL language in alphabeti-

cal order. You can also fi nd entries for the basic building blocks you need to understand 

and use in various clauses: Column-Name, Expression, Search-Condition, and Subquery. 

If you’re new to SQL, you might want to study these building block topics fi rst. You can 

then study the major clauses of a SELECT statement in the order in which they appear in 

a SELECT statement: PARAMETERS, SELECT, FROM, WHERE, GROUP BY, HAVING, UNION, 

and ORDER BY.

In the second section, you can fi nd a discussion of the syntax for the four types of que-

ries that you can use to update your database, also in alphabetical order: DELETE, INSERT, 

SELECT INTO, and UPDATE. As you study these topics, you’ll fi nd references to some 

of the major clauses that you’ll also use in a SELECT statement. You can fi nd the details 

about those clauses in the fi rst section.

How to Use This Article

This article contains two major sections: SQL SELECT queries and SQL action queries. 

Within the fi rst section, you can fi nd keywords used in the SQL language in alphabeti-

cal order. You can also fi nd entries for the basic building blocks you need to understand 

and use in various clauses: Column-Name, Expression, Search-Condition, and Subquery. 

If you’re new to SQL, you might want to study these building block topics fi rst. You can 

then study the major clauses of a SELECT statement in the order in which they appear in 

a SELECT statement: PARAMETERS, SELECT, FROM, WHERE, GROUP BY, HAVING, UNION, 

and ORDER BY.

In the second section, you can fi nd a discussion of the syntax for the four types of que-

ries that you can use to update your database, also in alphabetical order: DELETE, INSERT, 

SELECT INTO, and UPDATE. As you study these topics, you’ll fi nd references to some 

of the major clauses that you’ll also use in a SELECT statement. You can fi nd the details 

about those clauses in the fi rst section.

SQL SELECT Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . A34 SQL Action Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A71

 A33

ZR2623252.indd   33 2/23/2007   9:45:30 PM



Note
This article does not document all the syntax variants accepted by Access, but it does 

cover all the features of the SELECT statement and of action queries. Wherever possible, 

ANSI-standard syntax is shown to provide portability across other databases that also 

support some form of SQL. You might notice that Access modifi es the ANSI-standard 

syntax to a syntax that it prefers after you defi ne and save a query. You can fi nd some of 

the examples shown in the following pages in the ContactsDataCopy.accdb sample data-

base. When an example is in the sample database, you’ll fi nd the name of the sample 

query in italics immediately preceding the query in the text. For a discussion of the syn-

tax conventions used in this article, see “Conventions and Features Used in This Book” at 

the front of the book.

SQL SELECT Queries
The SELECT statement forms the core of the SQL database language. You use the 
SELECT statement to select or retrieve rows and columns from database tables. The 
SELECT statement syntax contains six major clauses: SELECT, FROM, WHERE, 
GROUP BY, HAVING, and ORDER BY.

In an Access desktop application (.accdb), Access implements three signifi cant exten-
sions to the standard language: TRANSFORM, to allow you to build crosstab queries; 
IN, to allow you to specify a remote database connection or to specify column names 
in a crosstab query; and DISTINCTROW in a SELECT statement, to limit the rows 
returned from the <table list> to rows that have different primary key values in the 
tables that supply columns in the <fi eld list>. In a previous version format database 
(.mdb), you can also use WITH OWNERACCESS OPTION in a SELECT statement to 
design queries in a secured database that can be run by users who are authorized to use 
the query, including those who have insuffi cient access rights to the tables referenced 
in the query.

Note
When you save a query you have written in SQL in your database, Access often examines 

your SQL command and adds brackets or extra parentheses to make the command easier 

to parse and compile. In some cases, Access restates complex predicates or changes the 

ANSI-standard syntax to one it prefers. For this reason, the examples shown in the book 

might not exactly match what you see in the sample queries when you open them in SQL 

view. If you enter the SQL exactly as shown in the book, it will return the same result as 

the sample query you fi nd in the database.

Note
This article does not document all the syntax variants accepted by Access, but it does 

cover all the features of the SELECT statement and of action queries. Wherever possible, 

ANSI-standard syntax is shown to provide portability across other databases that also 

support some form of SQL. You might notice that Access modifi es the ANSI-standard 

syntax to a syntax that it prefers after you defi ne and save a query. You can fi nd some of 

the examples shown in the following pages in the ContactsDataCopy.accdb sample data-

base. When an example is in the sample database, you’ll fi nd the name of the sample 

query in italics immediately preceding the query in the text. For a discussion of the syn-

tax conventions used in this article, see “Conventions and Features Used in This Book” at 

the front of the book.

Note
When you save a query you have written in SQL in your database, Access often examines 

your SQL command and adds brackets or extra parentheses to make the command easier 

to parse and compile. In some cases, Access restates complex predicates or changes the 

ANSI-standard syntax to one it prefers. For this reason, the examples shown in the book 

might not exactly match what you see in the sample queries when you open them in SQL 

view. If you enter the SQL exactly as shown in the book, it will return the same result as 

the sample query you fi nd in the database.

A
rticle 2

A34 Article 2 Understanding SQL

ZR2623252.indd   34 2/23/2007   9:45:31 PM



Aggregate Functions: AVG, CHECKSUM_AGG, COUNT, MAX, 
MIN, STDEV, STDEVP, SUM, VAR, VARP
See Table 8-1 (on page 437 of the printed book) in Chapter 8, “Building Complex Que-
ries,” and Table 27-1 (on page 1506 of the printed book) in Chapter 27.

BETWEEN Predicate
Compares a value with a range of values.

Syntax

<expression> [NOT] BETWEEN <expression> AND <expression>

Notes

The data types of all expressions must be compatible. Comparison of alphanumeric 
literals (strings) in Access or a default installation of SQL Server is case-insensitive.

Let a, b, and c be expressions. Then, in terms of other predicates, a BETWEEN b AND c 
is equivalent to the following:

(a >= b) AND (a <= c)

a NOT BETWEEN b AND c is equivalent to the following:

(a < b) OR (a > c)

The result is undefi ned if any of the expressions is Null.

Example

To determine whether the SoldPrice is greater than or equal to $100 and less than or 
equal to $500, enter the following:

SoldPrice BETWEEN 100 AND 500

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

Column-Name
Specifi es the name of a column in an expression.

Syntax

[[[]{table-name | select-query-name | 
  correlation-name}[]].][[]field-name[]]

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

 SQL SELECT Queries A35

A
rt

ic
le

 2

ZR2623252.indd   35 2/23/2007   9:45:31 PM



Notes

You must supply a qualifier to the field name only if the name is ambiguous within the 
context of the query or subquery (for example, if the same field name appears in more 
than one table or query listed in the FROM clause).

The table-name, select-query-name, or correlation-name that qualifies the field name must 
also appear in the FROM clause of the query or subquery. If a table or query has a corre-
lation name, you must use the alias, not the actual name of the table or query. (A correla-
tion name is an alias you assign to the table or query name in the FROM clause.)

You must supply the enclosing brackets in an Access desktop application (.accdb) only 
if the name contains an embedded blank or the name is also a reserved word (such as 
select, table, name, or date). Embedded blanks and enclosing brackets are not supported 
in the ANSI standard. You can use names that have embedded blanks in SQL Server by 
including a SET QUOTED IDENTIFIER ON command and then enclosing each non-
standard name in double quotes ("). When you open a query from an Access project, 
Access automatically includes this command in the command stream that it sends to 
SQL Server.

If the field-name is a multi-value field, a query referencing the field-name returns the indi-
vidual values separated by commas. A query datasheet provides a combo box that you 
can use to edit the multiple values. If you bind the column to a combo box control on a 
form, you can edit the field on the form. To edit the individual values in separate rows, 
use field-name.Value in your query. For records in the table that have multiple values 
in the field, the query returns one row per value. The effect is identical to linking to a 
related many-to-many lookup table using a join. (See FROM Clause later in this article 
for details about defining a join in a query.) Note, however, that when you ask for field-
name.Value from more than one multi-value column in a table, the resulting query is not 
updatable because the query returns the Cartesian product of the multiple values in the 
two fields for each row in the source table.

If the field-name is an Attachment data type, a query datasheet provides an attachment 
control to allow you to edit the data. You can also edit the data if you bind the field to 
an attachment control in a form. You can individually reference one of the three prop-
erties of an attachment field: field-name.FileData, field-name.FileName, or field-name.
FileType. All three properties return one row per separate attachment for each record 
in the source table, but you cannot update the values. The FileData property returns the 
binary attached file, the FileName property returns the original name of the file, and 
the FileType property returns the file extension.

Examples

To specify a field named Customer Last Name in a table named Customer List in an 
Access desktop application (.accdb), use the following:

[Customer List].[Customer Last Name]

A
rticle 2

A36 Article 2 Understanding SQL

ZR2623252.indd   36 2/23/2007   9:45:32 PM



To reference the same column in a view, stored procedure, or function for SQL Server, 
use the following:

"Customer List"."Customer Last Name"

To specify a fi eld named StreetAddress that appears in only one table or query in the 
FROM clause, enter the following:

StreetAddress

To reference the individual values of a multi-value fi eld named ContactType, enter the 
following:

ContactType.Value

See also FROM Clause, SELECT Statement, and Subquery in this article.

Comparison Predicate
Compares the values of two expressions or the value of an expression and a single value 
returned by a subquery.

Syntax

<expression> {= | <> | > | < | >= | <=} 
  {<expression> | <subquery>}

Notes

Comparison of strings in Access or a default installation of SQL Server is case-
 insensitive. The data type of the fi rst expression must be compatible with the data type 
of the second expression or with the value returned by the subquery. If the subquery 
returns no rows or more than one row, an error is returned except when the select list 
of the subquery is COUNT(*), in which case the return of multiple rows yields one 
value. If either the fi rst expression, the second expression, or the subquery evaluates to 
Null, the result of the comparison is undefi ned.

Examples

To determine whether the sales date was in 2007, enter the following:

Year(DateSold) = 2007

To determine whether the invoice ID is not equal to 50, enter the following:

InvoiceID <> 50

See also FROM Clause, SELECT Statement, and Subquery in this article.

 SQL SELECT Queries A37

A
rt

ic
le

 2

ZR2623252.indd   37 2/23/2007   9:45:32 PM



To determine whether a product was sold in the fi rst half of the year, enter the following:

Month(DateSold) < 7

To determine whether the date sold in the current row is less than the earliest order for 
ProductID 1, enter the following:

DateSold <

  (SELECT MIN(DateSold)

    FROM tblContactProducts

    WHERE ProductID = 1)

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

EXISTS Predicate
Tests the existence of at least one row that satisfi es the selection criteria in a subquery.

Syntax

EXISTS (<subquery>)

Notes

The result cannot be undefi ned. If the subquery returns at least one row, the result is 
True; otherwise, the result is False. The subquery need not return values for this predi-
cate; therefore, you can list any columns in the select list that exist in the underlying 
tables or queries or use an asterisk (*) to denote all columns.

Example

To fi nd all contacts that own at least one product, enter the following (qxmplContacts-
SomeProduct):

SELECT tblContacts.FirstName, tblContacts.MiddleInit, tblContacts.LastName

  FROM tblContacts

  WHERE EXISTS 

    (SELECT * 

      FROM tblContactProducts 

        INNER JOIN tblProducts

        ON tblContactProducts.ProductID = tblProducts.ProductID

      WHERE tblContactProducts.ContactID = tblContacts.ContactID

        AND tblProducts.TrialVersion = 0);

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

A
rticle 2

A38 Article 2 Understanding SQL

ZR2623252.indd   38 2/23/2007   9:45:32 PM



Note
In this example, the inner subquery makes a reference to the tblContacts table in the 

SELECT statement by referring to a column in the outer table (tblContacts.ContactID). 

This forces the subquery to be evaluated for every row in the SELECT statement, which 

might not be the most effi cient way to achieve the desired result. (This type of sub-

query is also called a correlated subquery.) Whenever possible, the database query plan 

optimizer solves the query effi ciently by reconstructing the query internally as a join 

between the source specifi ed in the FROM clause and the subquery. In many cases, you 

can perform this reconstruction yourself, but the purpose of the query might not be as 

clear as when you state the problem using a subquery.

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

Expression
Specifi es a value in a predicate or in the select list of a SELECT statement or subquery.

Syntax

[+ | –] {function | [(]<expression>[)] | literal | 
  column-name} [{+ | – | * | / | \ | ^ | MOD | &}
  {function | [(]<expression>[)] | literal | 
  column-name}]...

Notes

function—You can specify one of the SQL aggregate functions: AVG, COUNT, MAX, MIN, 
STDEV, STDEVP, SUM, VAR, or VARP; however, you cannot use an SQL aggregate func-
tion more than once in an expression. In a desktop application (.accdb), you can also 
use any of the functions built into Access or any function you defi ne using Visual Basic. 
In a project fi le (.adp), you can use any of the SQL Server built-in functions.

[(]<expression>[)]—You can construct an expression from multiple expressions separated 
by operators. Use parentheses around expressions to clarify the evaluation order. (See 
the examples later in this section.)

literal—You can specify a numeric or an alphanumeric constant. You must enclose an 
alphanumeric constant in single quotation marks in a project fi le (.adp) or single or 
double quotation marks in a desktop database (.accdb). To include an apostrophe in an 
alphanumeric constant, enter the apostrophe character twice in the literal string; or, in 
a desktop database, you can also choose to enclose the literal string in double quota-
tion marks. If the expression is numeric, you must use a numeric constant. In a desktop 
database (.accdb), enclose a date/time literal within pound (#) signs, and any date/time 
literal you enter in SQL view must follow the U.S. mm/dd/yy (or mm/dd/yyyy) format. 
This might be different from the format you use on the query design grid, which must 
follow the format defi ned for Short Date Style in your Regional And Language Options 

Note
In this example, the inner subquery makes a reference to the tblContacts table in the 

SELECT statement by referring to a column in the outer table (tblContacts.ContactID). 

This forces the subquery to be evaluated for every row in the SELECT statement, which 

might not be the most effi cient way to achieve the desired result. (This type of sub-

query is also called a correlated subquery.) Whenever possible, the database query plan correlated subquery.) Whenever possible, the database query plan correlated subquery
optimizer solves the query effi ciently by reconstructing the query internally as a join 

between the source specifi ed in the FROM clause and the subquery. In many cases, you 

can perform this reconstruction yourself, but the purpose of the query might not be as 

clear as when you state the problem using a subquery.

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

 SQL SELECT Queries A39

A
rt

ic
le

 2

ZR2623252.indd   39 2/23/2007   9:45:33 PM



section in Windows Control Panel. In a project file (.adp), you must enclose date or time 
literals in single quotes, and you can use any specification inside the quotes that SQL 
Server can recognize as a date or time. For example, SQL Server recognizes any of the 
following as a valid date literal:

'April 15, 2007' 

'15 April, 2007' 

'070415' 

'04/15/2007' 

'2007-04-15'

column-name—You can specify the name of a column in a table or a query. You can use 
a column name only from a table or query that you’ve specified in the FROM clause 
of the statement. If the expression is arithmetic, you must use a column that contains 
numeric data. If the same column name appears in more than one of the tables or que-
ries included in the query, you must fully qualify the name with the query name, table 
name, or correlation name, as in TableA.Column1. When a table or column name con-
tains a blank or is a reserved word (such as select, table, name, or date) in a desktop data-
base (.accdb), you must enclose each name in brackets, as in [Table A].[Column 1]. When 
a table or column name contains a blank or is a reserved word in a project file (.adp), 
you must enclose each name in double quotes, as in "Table A"."Column 1". Note that when 
you open a query in an Access project, Access includes the required SET QUOTED 
IDENTIFIER ON command in the command string. However, if you execute an SQL 
Server query from a desktop database with a pass-through query, you must include this 
command in the pass-through query. Although in ANSI SQL (and SQL Server) you can 
reference an output-column-name anywhere within an expression, Access supports this 
only within the <field list> of a SELECT statement. Access does not support references 
to named expression columns in GROUP BY, HAVING, ORDER BY, or WHERE clauses. 
You must repeat the expression rather than use the column name. See SELECT State-
ment later in this article for details about output-column-name.

+ | - | * | / | \ | ^ | MOD—You can combine multiple numeric expressions with arith-
metic operators that specify a calculation. If you use arithmetic operators, all expres-
sions within an expression must evaluate as numeric data types.

&—You can concatenate alphanumeric expressions by using the & operator in a desk-
top database (.accdb). In a project file (.adp), use + as the concatenation operator.

Examples

To specify the average of a column named COST, enter the following:

AVG(COST)

To specify one-half the value of a column named PRICE, enter the following:

(PRICE * .5)

A
rticle 2

A40 Article 2 Understanding SQL

ZR2623252.indd   40 2/23/2007   9:45:33 PM



To specify a literal for 3:00 P.M. on March 1, 2007, in a desktop database (.accdb), enter 
the following:

#3/1/2007 3:00PM#

To specify a literal for 3:00 P.M. on March 1, 2007, in a project fi le (.adp), enter the fol-
lowing:

'March 1, 2007 3:00PM'

To specify a character string that contains the name Acme Mail Order Company, enter 
the following:

'Acme Mail Order Company'

To specify a character string that contains a possessive noun (requiring an embedded 
apostrophe), enter the following:

'Andy''s Hardware Store'

or in a desktop database you can also enter:

"Andy's Hardware Store"

In a desktop database (.accdb), to specify a character string that is the concatenation of 
fi elds from a table named Customer List containing a person’s fi rst and last name with 
an intervening blank, enter the following:

[Customer List].[First Name] & " " & [Customer List].[Last Name]

In a project fi le (.adp), to specify a character string that is the concatenation of fi elds 
from a table named Customer List containing a person’s fi rst and last name with an 
intervening blank, enter the following:

"Customer List"."First Name" + ' ' + "Customer List"."Last Name"

See also Column-Name, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE NULL, and Quan-
tifi ed), SELECT Statement, Subquery, and UPDATE Statement in this article.

FROM Clause
Specifi es the tables or queries that provide the source data for your query.

Syntax
FROM {table-name [[AS] correlation-name] | 
    select-query-name [[AS] correlation-name] | 
    (<select-statement>) AS correlation-name |
    <joined table>},...

  [IN <"source database name"> <[source connect string]>]

See also Column-Name, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE NULL, and Quan-
tifi ed), SELECT Statement, Subquery, and UPDATE Statement in this article.

 SQL SELECT Queries A41

A
rt

ic
le

 2

ZR2623252.indd   41 2/23/2007   9:45:33 PM



where <joined table> is

({table-name [[AS] correlation-name] |  
  select-query-name [[AS] correlation-name] |  
  <joined table>} 

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN  
  {table-name [[AS] correlation-name] |  
  select-query-name [[AS] correlation-name] |  
  <joined table>} 

ON <join-specification>)

where <joined table> is the result of another join operation, and where <join-specification> 
is a search condition made up of predicates that compare fields in the first table, query, 
or joined table with fields in the second table, query, or joined table.

Notes

You can supply a correlation name for each table name or query name and use this cor-
relation name as an alias for the full table name when qualifying column names in the 
<field-list>, in the <join-specification>, or in the WHERE clause and subclauses. If you’re 
joining a table or a query to itself, you must use correlation names to clarify which copy 
of the table or query you’re referring to in the select list, join criteria, or selection crite-
ria. If a table name or a query name is also an SQL reserved word (for example, Order), 
you must enclose the name in brackets. In SQL Server, you must enclose the name of a 
table or query that is also an SQL reserved word in double quotes. Note that when you 
open a query in an Access project, Access includes the required SET QUOTED IDEN-
TIFIER ON command in the command string. However, if you execute an SQL Server 
query from a desktop database with a pass-through query, you must include this com-
mand in the pass-through query.

Use INNER JOIN to return all the rows that match the join specification in both tables. 
Use LEFT [OUTER] JOIN to return all the rows from the first logical table (where logical 
table is any table, query, or joined table expression) joined on the join specification with 
any matching rows from the second logical table. When no row matches in the second 
logical table, the database returns Null values for the columns from that table. Con-
versely, RIGHT [OUTER] JOIN returns all the rows from the second logical table joined 
with any matching rows from the first logical table. A FULL [OUTER] JOIN returns all 
rows from the tables or queries on both sides of the join, but only SQL Server supports 
this operation.

When you use only equals comparison predicates in the join specification, the result 
is called an equi-join. The joins that Access displays in the design grid are equi-joins. 
Access cannot display on the design grid any join specification that uses any compari-
son operator other than equals (=)—also called a non-equijoin. If you want to define a 
join on a nonequals comparison (<, >, <>, <=, or >=) in Access, you must define the query 
using the SQL view. The query designer in an Access project can display non-equijoins. 
When you join a table to itself using an equals comparison predicate, the result is called 
a self-join.

A
rticle 2

A42 Article 2 Understanding SQL

ZR2623252.indd   42 2/23/2007   9:45:34 PM



SQL Server also supports a CROSS JOIN (with no ON clause). A CROSS JOIN produces 
the same result as listing table or query names separated by commas with no JOIN 
specification (a Cartesian product).

If you include multiple tables in the FROM clause with no JOIN specification but do 
include a predicate that matches fields from the multiple tables in the WHERE clause, 
the database in most cases optimizes how it solves the query by treating the query as a 
JOIN. For example:

SELECT * 

  FROM TableA, TableB 

  WHERE TableA.ID = TableB.ID

is solved by the database as though you had specified

SELECT * 

  FROM TableA 

    INNER JOIN TableB 

    ON TableA.ID = TableB.ID

You cannot update fields in a table by using a recordset opened on the query, the query 
datasheet, or a form bound to a multiple table query where the join is expressed using a 
table-list and a WHERE clause. In many cases you can update the fields in the underly-
ing tables when you use the JOIN syntax.

When you list more than one table or query without join criteria, the source is the Car-
tesian product of all the tables. For example, FROM TableA, TableB instructs the database 
to fetch all the rows of TableA matched with all the rows of TableB. Unless you specify 
other restricting criteria, the number of logical rows that the database processes could 
equal the number of rows in TableA times the number of rows in TableB. When you 
include WHERE or HAVING clauses, the database returns the rows in which the selec-
tion criteria specified in those clauses evaluate to True.

Example

To select information about all companies and contacts and any products purchased, 
enter the following (qxmplAllCompanyContactsAnyProducts):

SELECT tblCompanies.CompanyName, tblContacts.FirstName,  

    tblContacts.LastName, CP.ProductName, CP.DateSold, CP.SoldPrice 

  FROM ((tblCompanies  

    INNER JOIN tblCompanyContacts  

    ON tblCompanies.CompanyID = tblCompanyContacts.CompanyID)  

    INNER JOIN tblContacts  

    ON tblContacts.ContactID = tblCompanyContacts.ContactID)  

    LEFT JOIN  

      (SELECT tblContactProducts.ContactID, tblProducts.ProductName,  

        tblContactProducts.DateSold, tblContactProducts.SoldPrice 

      FROM tblProducts  

      INNER JOIN tblContactProducts   

      ON tblProducts.ProductID = tblContactProducts.ProductID 

      WHERE tblProducts.TrialVersion = 0) AS CP  

    ON tblContacts.ContactID = CP.ContactID;

 SQL SELECT Queries A43

A
rt

ic
le

 2

ZR2623252.indd   43 2/23/2007   9:45:34 PM



Note

If you save the preceding query in a previous version of Access, when you open the query 

in Design view, you’ll fi nd that Access saves the inner <select-statement> with brackets:

[SELECT tblContactProducts.ContactID, tblProducts.ProductName, 

tblContactProducts.DateSold, tblContactProducts.SoldPrice

FROM tblProducts

INNER JOIN tblContactProducts

ON tblProducts.ProductID = tblContactProducts.ProductID

WHERE tblProducts.TrialVersion = 0]. AS CP

This is the internal syntax supported by the JET database engine installed with Access 

2003 and earlier. The new Access Database Engine (ACE) supplied with Access 2007 no 

longer modifi es the SQL—you’ll fi nd the sample query saved exactly as stated in the 

example without brackets.

See also HAVING Clause, IN Clause, SELECT Statement, Subquery, and WHERE Clause in this 
article.

GROUP BY Clause
In a SELECT statement, specifi es the columns used to form groups from the rows 
selected. Each group contains identical values in the specifi ed column(s). In Access, you 
use the GROUP BY clause to defi ne a totals query. You must also include a GROUP BY 
clause in a crosstab query in Access. (See TRANSFORM Statement for details.)

Syntax

GROUP BY column-name,...

Notes

A column name in the GROUP BY clause can refer to any column from any table in the 
FROM clause, even if the column is not named in the select list. If the GROUP BY clause 
is preceded by a WHERE clause, the database creates the groups from the rows selected 
after it applies the WHERE clause. When you include a GROUP BY clause in a SELECT 
statement, the select list must be made up of either SQL aggregate functions or column 
names specifi ed in the GROUP BY clause.

Example

To fi nd the average and maximum prices for products by category name, enter the fol-
lowing (qxmplCategoryAvgMaxPrice):

SELECT tblProducts.CategoryDescription, 

    Avg(tblProducts.UnitPrice) AS AvgOfUnitPrice, 

    Max(tblProducts.UnitPrice) AS MaxOfUnitPrice

Note

If you save the preceding query in a previous version of Access, when you open the query 

in Design view, you’ll fi nd that Access saves the inner <select-statement> with brackets:

[SELECT tblContactProducts.ContactID, tblProducts.ProductName, 

tblContactProducts.DateSold, tblContactProducts.SoldPrice

FROM tblProducts

INNER JOIN tblContactProducts

ON tblProducts.ProductID = tblContactProducts.ProductID

WHERE tblProducts.TrialVersion = 0]. AS CP

This is the internal syntax supported by the JET database engine installed with Access 

2003 and earlier. The new Access Database Engine (ACE) supplied with Access 2007 no 

longer modifi es the SQL—you’ll fi nd the sample query saved exactly as stated in the 

example without brackets.

See also HAVING Clause, IN Clause, SELECT Statement, Subquery, and WHERE Clause in this 
article.

A
rticle 2

A44 Article 2 Understanding SQL

ZR2623252.indd   44 2/23/2007   9:45:35 PM



  FROM tblProducts

  WHERE tblProducts.TrialVersion = 0

  GROUP BY tblProducts.CategoryDescription;

See also Aggregate Functions, HAVING Clause, Search-Condition, SELECT Statement, and 
WHERE Clause in this article.

HAVING Clause
Specifi es groups of rows that appear in the logical table (a recordset) defi ned by a 
SELECT statement. The search condition applies to columns specifi ed in a GROUP 
BY clause, to columns created by aggregate functions, or to expressions containing 
aggregate functions. If a group doesn’t pass the search condition, the database does not 
include it in the logical table.

Syntax

HAVING <search-condition>

Notes

If you do not include a GROUP BY clause, the select list must be formed by using one or 
more of the SQL aggregate functions.

The difference between the HAVING clause and the WHERE clause is that WHERE 
<search-condition> applies to single rows before they are grouped, while HAVING 
<search-condition> applies to groups of rows.

If you include a GROUP BY clause preceding the HAVING clause, the <search-condition> 
applies to each of the groups formed by equal values in the specifi ed columns. If you do 
not include a GROUP BY clause, the <search-condition> applies to the entire logical table 
defi ned by the SELECT statement.

Example

To fi nd invoice amount for all invoices that total more than $150, enter the following 
(qxmplTotalInvoices>150):

SELECT tblCompanies.CompanyName, tblInvoices.InvoiceID, 

    tblInvoices.InvoiceDate, Sum(tblContactProducts.SoldPrice) AS InvoiceTotal

  FROM (tblCompanies 

    INNER JOIN tblInvoices 

    ON tblCompanies.CompanyID = tblInvoices.CompanyID) 

    INNER JOIN tblContactProducts 

    ON tblInvoices.InvoiceID = tblContactProducts.InvoiceID

  GROUP BY tblCompanies.CompanyName, tblInvoices.InvoiceID, 

    tblInvoices.InvoiceDate

HAVING Sum(tblContactProducts.SoldPrice) > 150;

See also Aggregate Functions, GROUP BY Clause, Search-Condition, SELECT Statement, and 
WHERE Clause in this article.

See also Aggregate Functions, HAVING Clause, Search-Condition, SELECT Statement, and 
WHERE Clause in this article.

See also Aggregate Functions, GROUP BY Clause, Search-Condition, SELECT Statement, and 
WHERE Clause in this article.

 SQL SELECT Queries A45

A
rt

ic
le

 2

ZR2623252.indd   45 2/23/2007   9:45:35 PM



IN Clause
In a desktop database (.accdb), specifies the source for the tables in a query. The source 
can be another Access database; a dBASE, Microsoft FoxPro, or Paradox file; or any 
database for which you have an ODBC driver. This is an Access extension to stand-
ard SQL.

Syntax

IN <"source database name"> <[source connect string]>

Enter "source database name" and [source connect string]. (Be sure to include the quotation 
marks and the brackets.) If your database source is Access, enter only "source database 
name". Enter these parameters according to the type of database to which you are con-
necting, as shown in Table A2-1.

Table A2-1  IN Parameters for Various Database Types

Database Name Source Database Name Source Connect String

Access “drive:\path\filename” (none)

dBASE III “drive:\path” [dBASE III;]

dBASE IV “drive:\path” [dBASE IV;]

dBASE 5 “drive:\path” [dBASE 5.0;]

Paradox 3.x “drive:\path” [Paradox 3.x;]

Paradox 4.x “drive:\path” [Paradox 4.x;]

Paradox 5.x “drive:\path” [Paradox 5.x;]

FoxPro 3.0 “drive:\path” [FoxPro 3.0;]

Visual FoxPro (none) [ODBC; DRIVER=Microsoft FoxPro 
VFP Driver (*.dbf); SourceType=DBF; 
SourceDB=databasepath]

ODBC (none) [ODBC; DATABASE= defaultdatabase; 
UID=user; PWD= password;DSN= 
datasourcename]

Notes

The IN clause applies to all tables referenced in the FROM clause and any subqueries 
in your query. You can refer to only one external database within a query, but if the IN 
clause points to a database that contains more than one table, you can use any of those 
tables in your query. If you need to refer to more than one external file or database, 
attach those files as tables in Access and use the logical attached table names instead.

For ODBC, if you omit the DSN= or DATABASE= parameters, Access prompts you with 
a dialog box showing available data sources so that you can select the one you want. 
If you omit the UID= or PWD= parameters and the server requires a user ID and pass-
word, Access prompts you with a login dialog box for each table accessed.

A
rticle 2

A46 Article 2 Understanding SQL

ZR2623252.indd   46 2/23/2007   9:45:35 PM



For dBASE, Paradox, and FoxPro databases, you can provide an empty string ("") 
for source database name and provide the path or dictionary fi le name using the 
 DATABASE= parameter in source connect string instead, as in

"[dBase IV; DATABASE=C:\MyDB\dbase.dbf]"

Example

In a desktop database (.accdb), to retrieve the Company Name fi eld in the Northwind 
Traders sample database without having to attach the Customers table, you could enter 
the following:

SELECT Customers.CompanyName

FROM Customers

IN "C:\My Documents\Shortcut to NORTHWIND.ACCDB";

See also SELECT Statement in this article.

IN Predicate
Determines whether a value is equal to any of the values or is unequal to all values in a 
set returned from a subquery or provided in a list of values.

Syntax

<expression> [NOT] IN {(<subquery>) | 
  ({literal},...) |<expression>}

Notes

Comparison of strings in Access or a default installation of SQL Server is case-
 insensitive. The data types of all expressions, literals, and the column returned by the 
subquery must be compatible. If the expression is Null or any value returned by the 
subquery is Null, the result is undefi ned. In terms of other predicates, <expression> IN 
<expression> is equivalent to the following:

<expression> = <expression>

<expression> IN (<subquery>) is equivalent to the following:

<expression> = ANY (<subquery>)

<expression> IN (a, b, c,...), where a, b, and c are literals, is equivalent to the following:

(<expression> = a) OR (<expression> = b) OR 

  (<expression> = c) ...

<expression> NOT IN ... is equivalent to the following:

NOT (<expression> IN ...)

See also SELECT Statement in this article.

 SQL SELECT Queries A47

A
rt

ic
le

 2

ZR2623252.indd   47 2/23/2007   9:45:35 PM



Examples

To test whether StateOrProvince is on the West Coast of the United States, enter the 
following:

[StateOrProvince] IN ('CA', 'OR', 'WA')

To list all contacts who have not purchased a multi-user product, enter the following 
(qxmplContactsNotMultiUser):

SELECT tblContacts.ContactID, tblContacts.FirstName, 

    tblContacts.MiddleInit, tblContacts.LastName

  FROM tblContacts

  WHERE tblContacts.ContactID NOT IN 

    (SELECT ContactID 

      FROM tblContactProducts 

        INNER JOIN tblProducts 

        ON tblContactProducts.ProductID = tblProducts.ProductID 

      WHERE tblProducts.CategoryDescription = 'Multi-User');

See also Expression, Quantifi ed Predicate, SELECT Statement, Subquery, and WHERE Clause in 
this article.

LIKE Predicate
Searches for strings that match a pattern.

Syntax

column-name [NOT] LIKE match-string [ESCAPE escape-character]

Notes

String comparisons in Access or a default installation of SQL Server are case-
 insensitive. If the column specifi ed by column-name contains a Null, the result is unde-
fi ned. Comparison of two empty strings or an empty string with the special asterisk (*) 
character (% character in SQL Server) evaluates to True.

You provide a text string as a match-string value that defi nes what characters can exist 
in which positions for the comparison to be true. Access and SQL Server understand 
a number of wildcard characters (shown in Table A2-2) that you can use to defi ne 
positions that can contain any single character, zero or more characters, or any single 
 number.

See also Expression, Quantifi ed Predicate, SELECT Statement, Subquery, and WHERE Clause in 
this article.

A
rticle 2

A48 Article 2 Understanding SQL

ZR2623252.indd   48 2/23/2007   9:45:36 PM



Table A2-2  Wildcard Characters for String Comparisons

Desktop Database Project File Meaning

? _ Any single character

* % Zero or more characters (used to defi ne 
leading, trailing, or embedded strings that 
don’t have to match any of the pattern 
characters)

# [0-9] Any single number

You can also specify in the match string that any particular position in the text or 
memo fi eld can contain only characters from a list that you provide. To defi ne a list of 
comparison characters for a particular position, enclose the list in brackets ([ ]). You 
can specify a range of characters within a list by entering the low-value character, a 
hyphen, and the high-value character, as in [A-Z] or [3-7]. If you want to test a position 
for any characters except those in a list, start the list with an exclamation point (!) in a 
desktop database or a caret symbol (̂ ) in a project fi le.

If you want to test for one of the special characters *, ?, #, and [, (and _ or % in a project 
fi le), you must enclose the character in brackets. Alternatively, in a project fi le, you can 
specify an ESCAPE clause. When you place the escape character in the match string, 
the database ignores the character and uses the following character as a literal compari-
son value. So, you can include the escape character immediately preceding one of the 
special characters to use the special character as a literal comparison instead of a pat-
tern character. Desktop databases do not support the ESCAPE clause.

Examples

In a desktop database, to determine whether a contact’s last name is at least four charac-
ters long and begins with Smi, enter the following:

tblContacts.LastName LIKE "Smi?*"

In a project fi le, write the previous test as follows:

tblContacts.LastName LIKE 'Smi_%'

In a desktop database, to test whether PostalCode is a valid Canadian postal code, enter 
the following:

PostalCode LIKE "[A-Z]#[A-Z] #[A-Z]#"

In a project fi le, to test whether a character column named Discount ends in 5%, enter 
the following:

Discount LIKE '%5$%' ESCAPE '$'

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

 SQL SELECT Queries A49

A
rt

ic
le

 2

ZR2623252.indd   49 2/23/2007   9:45:36 PM



NULL Predicate
Determines whether the expression evaluates to Null or not Null. This predicate evalu-
ates only to True or False and will not evaluate to undefi ned.

Syntax

<expression> IS [NOT] NULL

Example

To determine whether the contact work phone number column contains the Null value, 
enter the following:

tblContacts.WorkPhone IS NULL

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

ORDER BY Clause
Specifi es the sequence of rows to be returned by a SELECT statement or a subquery.

Syntax

ORDER BY {column-name | column-number [ASC | DESC]},...

Notes

You use column names or relative output column numbers to specify the columns on 
whose values the rows returned are ordered. (If you use relative output column num-
bers, the fi rst output column is 1.) You can specify multiple columns in the ORDER BY 
clause. When you specify multiple columns, the list is ordered primarily by the fi rst 
column. If rows exist for which the values of that column are equal, they are ordered 
by the next column in the ORDER BY list, and so on. When multiple rows contain the 
matching values in all the columns in the ORDER BY clause, the database can return 
the matching rows in any order. You can specify ascending (ASC) or descending 
(DESC) order for each column. If you do not specify ASC or DESC, ASC is assumed. 
Using an ORDER BY clause in a SELECT statement is the only means of defi ning the 
sequence of the returned rows.

When you include the DISTINCT keyword or use the UNION query operator in the 
SELECT statement, the ORDER BY clause can include only columns specifi ed in the 
SELECT clause. Otherwise, you can include any column in the logical table returned by 
the FROM clause.

To use ORDER BY in a view, function, or stored procedure in SQL Server, you must also 
include the TOP keyword in the SELECT clause. To fetch and sort all rows, specify TOP 
100 PERCENT. Note, however, that a view, function, or stored procedure returns the 

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

A
rticle 2

A50 Article 2 Understanding SQL

ZR2623252.indd   50 2/23/2007   9:45:36 PM



result ordered only when you directly execute the query from code. When Access runs 
a query in SQL Server that is identifi ed as the record source of a form or report or the 
row source of a combo box or list box, it sends a SELECT * FROM queryname command 
to the server. The server returns the rows sorted only when you specify the ORDER BY 
clause again in the record source or row source as part of a SELECT statement on the 
query.

Examples

To calculate the total for all invoices and list the result for each customer and invoice in 
descending sequence by order total, enter the following (qxmplOrderTotalSorted):

SELECT TOP 100 PERCENT tblCompanies.CompanyName, tblInvoices.InvoiceID, 

    tblInvoices.InvoiceDate, Sum(tblContactProducts.SoldPrice) AS InvoiceTotal

  FROM (tblCompanies 

    INNER JOIN tblInvoices 

    ON tblCompanies.CompanyID = tblInvoices.CompanyID) 

    INNER JOIN tblContactProducts 

    ON tblInvoices.InvoiceID = tblContactProducts.InvoiceID

  GROUP BY tblCompanies.CompanyName, tblInvoices.InvoiceID, 

    tblInvoices.InvoiceDate

  ORDER BY Sum(tblContactProducts.SoldPrice) DESC;

Note
The TOP keyword is optional in a desktop database (.accdb). In SQL Server, you can also 

specify the calculated column alias name in the ORDER BY clause: ORDER BY InvoiceTotal 

DESC. In a desktop database, you must repeat the calculation expression as shown in the 

example.

In a desktop database (.accdb), to create a mailing list for all companies and all 
contacts, sorted in ascending order by postal code, enter the following (qxmplSorted-
MailingList):

SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City, 

    tblCompanies.StateOrProvince, tblCompanies.PostalCode

  FROM tblCompanies

UNION 

SELECT [FirstName] & " " & ([MiddleInit]+". ") & [LastName] AS Contact, 

    tblContacts.HomeAddress, tblContacts.HomeCity, 

    tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode

  FROM tblContacts

ORDER BY 5;

Note
The TOP keyword is optional in a desktop database (.accdb). In SQL Server, you can also 

specify the calculated column alias name in the ORDER BY clause: ORDER BY InvoiceTotal 

DESC. In a desktop database, you must repeat the calculation expression as shown in the 

example.

 SQL SELECT Queries A51

A
rt

ic
le

 2

ZR2623252.indd   51 2/23/2007   9:45:37 PM



Note
If you decide to use column names in the ORDER BY clause of a UNION query, the 

 database derives the column names from the names returned by the fi rst query. In this 

example, you could change the ORDER BY clause to read ORDER BY PostalCode.

To create the same mailing list in a view or in-line function in an SQL Server database, 
enter the following:

SELECT TOP 100 PERCENT CompanyName, Address, City, 

    StateOrProvince, PostalCode

FROM

(SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City, 

    tblCompanies.StateOrProvince, tblCompanies.PostalCode

  FROM tblCompanies

UNION 

SELECT tblContacts.FirstName + ' ' + 

    IsNull(tblContacts.MiddleInit + '. ', '') + 

    tblContacts.LastName AS Contact, 

    tblContacts.HomeAddress, tblContacts.HomeCity, 

    tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode

  FROM tblContacts) AS U

ORDER BY 5;

Notice that you must UNION the rows fi rst and then select and sort them all.

See also INSERT Statement, SELECT Statement, and UNION Query Operator in this article.

PARAMETERS Declaration
In a desktop database (.accdb), precedes an SQL statement to defi ne the data types of 
any parameters you include in the query. You can use parameters to prompt the user 
for data values or to match data values in controls on an open form. (In an SQL Server 
database, you declare the parameters for a function or procedure as part of the CREATE 
statement. See Chapter 27 for details.)

Syntax

PARAMETERS {[parameter-name] data-type},... ;

Notes

If your query prompts the user for values, each parameter name should describe the 
value that the user needs to enter. For example, [Print invoices from orders on date:] is 
much more descriptive than [Enter date:]. If you want to refer to a control on an open 
form, use this format:

[Forms]![Myform]![Mycontrol]

Note
If you decide to use column names in the ORDER BY clause of a UNION query, the 

 database derives the column names from the names returned by the fi rst query. In this 

example, you could change the ORDER BY clause to read ORDER BY PostalCode.

See also INSERT Statement, SELECT Statement, and UNION Query Operator in this article.

A
rticle 2

A52 Article 2 Understanding SQL

ZR2623252.indd   52 2/23/2007   9:45:37 PM



To refer to a control on a subform, use this format:

[Forms]![Myform]![Mysubformcontrol].[Form]![ControlOnSubform]

Valid data type entries are shown in Table A2-3.

Table A2-3  SQL Parameter Data Types and Access Equivalents

SQL Parameter Data Types Equivalent Access Data Type

Char, Text(n)1, VarChar Text

Text1, LongText, LongChar, Memo Memo

TinyInt, Byte, Integer1 Number, Byte

SmallInt, Short, Integer2 Number, Integer

Integer, Long, Integer4 Number, Long Integer

Real, Single, Float4, IEEESingle Number, Single

Float, Double, Float8, IEEEDouble Number, Double

Decimal, Numeric Number, Decimal

UniqueIdentifier, GUID Number, Replication ID

DateTime, Date, Time Date/Time

Money, Currency Currency

Bit, Boolean, Logical, YesNo Yes/No

Image, LongBinary, OLEObject OLE Object

Text, LongText, LongChar, Memo Hyperlink2

Binary, VarBinary Binary3

1 Text with a length descriptor of 255 or less maps to the Access Text data type. Text with no length 
descriptor is a Memo field.

2 Internally, Access stores a Hyperlink in a Memo field but sets a custom property to indicate a Hyper-
link format.

3 The Access Database Engine (ACE) supports a Binary data type (raw hexadecimal), but the Access 
user interface does not. If you encounter a non-Access table that has a data type that maps to 
Binary, you will be able to see the data type in the table definition, but you won’t be able to success-
fully edit this data in a datasheet or form. You can manipulate Binary data in Visual Basic.

Example

To create a parameter query that summarizes the sales and the cost of goods for all 
items sold in a given month, enter the following (qxmplMonthSalesParameter):

PARAMETERS [Year to summarize:] Short, [Month to summarize:] Short; 

SELECT tblProducts.ProductName,  

    Format([DateSold],"mmmm"", ""yyyy") AS OrderMonth,  

    Sum(tblContactProducts.SoldPrice) AS TotalSales 

  FROM tblProducts  

    INNER JOIN tblContactProducts  

    ON tblProducts.ProductID = tblContactProducts.ProductID 

 SQL SELECT Queries A53

A
rt

ic
le

 2

ZR2623252.indd   53 2/23/2007   9:45:38 PM



  WHERE (Year([DateSold]) = [Year to summarize:]) 

    AND (Month([DateSold]) = [Month to summarize:])

GROUP BY tblProducts.ProductName, Format([DateSold],"mmmm"", ""yyyy");

See also SELECT Statement in this article.

Quantifi ed Predicate
Compares the value of an expression to some, any, or all values of a single column 
returned by a subquery.

Syntax

<expression> {= | <> | > | < | >= | <=} 
  [SOME | ANY | ALL] (<subquery>)

Notes

String comparisons in Access or a default installation of SQL Server are case-
 insensitive. The data type of the expression must be compatible with the data type of 
the value returned by the subquery.

When you use ALL, the predicate is true if the comparison is True for all the values 
returned by the subquery. If the expression or any of the values returned by the sub-
query is Null, the result is undefi ned. When you use SOME or ANY, the predicate is 
True if the comparison is true for any of the values returned by the subquery. If the 
expression is a Null value, the result is undefi ned. If the subquery returns no values, 
the predicate is False.

Examples

To fi nd the products whose price is greater than all the products in the Support cat-
egory, enter the following (qxmplProductPrice>AllSupport):

SELECT tblProducts.ProductID, tblProducts.ProductName, tblProducts.UnitPrice

  FROM tblProducts

  WHERE tblProducts.UnitPrice >All 

    (SELECT tblProducts.UnitPrice 

     FROM tblProducts 

     WHERE tblProducts.CategoryDescription = 'Support');

To fi nd the products whose price is greater than any of the products in the Support cat-
egory, enter the following (qxmplProductPrice>AnySupport):

SELECT tblProducts.ProductID, tblProducts.ProductName, tblProducts.UnitPrice

  FROM tblProducts

  WHERE tblProducts.UnitPrice >Any 

    (SELECT tblProducts.UnitPrice 

     FROM tblProducts 

     WHERE tblProducts.CategoryDescription = 'Support');

See also SELECT Statement in this article.

A
rticle 2

A54 Article 2 Understanding SQL

ZR2623252.indd   54 2/23/2007   9:45:38 PM



See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

Search-Condition
Describes a simple or compound predicate that is True, False, or undefi ned for a given 
row or group. Use a search condition in the WHERE clause of a SELECT statement, a 
subquery, a DELETE statement, or an UPDATE statement. You can also use a search 
condition within the HAVING clause in a SELECT statement. The search condition 
defi nes the rows that should appear in the resulting logical table or the rows that 
should be acted upon by the change operation. If the search condition is True when 
applied to a row, that row is included in the result.

Syntax

[NOT] {predicate | (<search-condition>)} 
  [{AND | OR | XOR | EQV | IMP} 
  [NOT] {predicate | (<search-condition>)}]...

Notes

If you include a comparison predicate in the form of <expression> comparison-operator 
<subquery>, the database returns an error if the subquery returns no rows. The database 
effectively applies any subquery in a predicate within a search condition to each row 
of the table that is the result of the previous clauses. The database then evaluates the 
result of the subquery with regard to each candidate row.

The order of evaluation of the Boolean operators is NOT, AND, OR, XOR (exclusive OR), 
EQV (equivalence), and IMP (implication). You can include additional parentheses to 
infl uence the order in which the Boolean expressions are processed. SQL Server does 
not support the XOR, EQV, or IMP logical operators.

 
You can express AND and OR Boolean operations directly by using the design grid. If you 

need to use XOR, EQV, or IMP, you must create an expression in the Field row, clear the 

Show check box, and set the Criteria row to <> False.

When you use the Boolean operator NOT, the following holds: NOT (True) is False, 
NOT (False) is True, and NOT (undefi ned) is undefi ned. The result is undefi ned when-
ever a predicate references a Null value. If a search condition evaluates to False or 
undefi ned when applied to a row, the row is not selected. The database returns True, 
False, or undefi ned values as a result of applying Boolean operators (AND, OR, XOR, 
EQV, IMP) against two predicates or search conditions according to the tables shown in 
Figure A2-1.

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

INSIDE OUT Using XOR, EQV, and IMP in the Access Query Designer

You can express AND and OR Boolean operations directly by using the design grid. If you 

need to use XOR, EQV, or IMP, you must create an expression in the Field row, clear the 

Show check box, and set the Criteria row to <> False.

INSIDE OUT

 SQL SELECT Queries A55

A
rt

ic
le

 2

ZR2623252.indd   55 2/23/2007   9:45:39 PM



True

False

Null

Null

NullNull

True Null

False

EQV True

True

False

False

Undefined (Null)

Undefined (Null)

False

True

Null

Null

NullNull

False Null

True

XOR True

True

False

False

Undefined (Null)

Undefined (Null)

True

True

True

True

NullNull

False Null

True

OR True

True

False

False

Undefined (Null)

Undefined (Null)

True

False

Null

True

NullFalse

False False

False

AND True

True

False

False

Undefined (Null)

Undefined (Null)

True

True

True

Null

NullNull

True True

False

IMP
[(Not A) OR B]

True

True

False

False

Undefined (Null)

Undefined (Null)

Figure A2-1 Truth tables for SQL Boolean operators

Example

In a desktop database, to find all products for which the unit price is greater than $100 
and for which the category description number is equal to Multi-User or the product 
has a prerequisite, but not both, enter the following (qxmplXOR):

SELECT tblProducts.ProductID, tblProducts.ProductName,  

    tblProducts.CategoryDescription, tblProducts.UnitPrice,  

    tblProducts.PreRequisite 

A
rticle 2

A56 Article 2 Understanding SQL

ZR2623252.indd   56 2/23/2007   9:45:40 PM



  FROM tblProducts

  WHERE tblProducts.UnitPrice>100 

    AND ((tblProducts.CategoryDescription = "Multi-User") 

    XOR (tblProducts.PreRequisite Is Not Null));

In a project fi le, to fi nd all products for which the unit price is greater than $100 and for 
which the category description number is equal to Multi-User or the product has a pre-
requisite, but not both, enter the following:

SELECT tblProducts.ProductID, tblProducts.ProductName, 

    tblProducts.CategoryDescription, tblProducts.UnitPrice, 

    tblProducts.PreRequisite

  FROM tblProducts

  WHERE tblProducts.UnitPrice>100 

    AND ((tblProducts.CategoryDescription = "Multi-User") 

    OR (tblProducts.PreRequisite Is Not Null)) 

    AND NOT ((tblProducts.CategoryDescription = "Multi-User") 

    AND (tblProducts.PreRequisite Is Not Null));

See also DELETE Statement, Expression, HAVING Clause, Predicates (BETWEEN, Comparison, 
EXISTS, IN, LIKE, NULL, and Quantifi ed), SELECT Statement, Subquery, UPDATE Statement, and 
WHERE Clause in this article.

SELECT Statement
Fetches data from one or more tables or queries to create a logical table (recordset). 
The items in the select list identify the columns or calculated values to return from the 
source tables to the new recordset. You identify the tables to be joined in the FROM 
clause, and you identify the rows to be selected in the WHERE clause. Use GROUP 
BY to specify how to form groups for an aggregate query, and use HAVING to specify 
which resulting groups should be included in the result.

Syntax

SELECT [ALL | DISTINCT | DISTINCTROW | TOP number
       [PERCENT]] <select-list>
FROM {table-name [[AS] correlation-name] | 
    select-query-name [[AS] correlation-name] | 
    (<select-statement>) AS correlation-name |
    <joined table>},...

  [IN <"source database name"> <[source connect
      string]>]

  [WHERE <search-condition>]
  [GROUP BY column-name,...]
  [HAVING <search-condition>]
  [UNION [ALL] <select-statement>]
  [ORDER BY {column-name [ASC | DESC]},...] 
  [WITH OWNERACCESS OPTION];

See also DELETE Statement, Expression, HAVING Clause, Predicates (BETWEEN, Comparison, 
EXISTS, IN, LIKE, NULL, and Quantifi ed), SELECT Statement, Subquery, UPDATE Statement, and 

 SQL SELECT Queries A57

A
rt

ic
le

 2

ZR2623252.indd   57 2/23/2007   9:45:40 PM



where <select-list> is

{* | {<expression> [AS output-column-name] |  
  table-name.* | query-name.* |  

  correlation-name.*},...}

and where <joined table> is

({table-name [[AS] correlation-name] | 
  select-query-name [[AS] correlation-name] | 
  (<select-statement>) AS correlation-name | 
  <joined table>} 

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN  
  {table-name [[AS] correlation-name] | 
  select-query-name [[AS] correlation-name] | 
  (<select-statement>) AS correlation-name | 
  <joined table>} 

ON <join-specification>)

Notes

You can supply a correlation name for each table name or query name and use this cor-
relation name as an alias for the full table name when qualifying column names in the 
<select-list>, in the <join-specification>, or in the WHERE clause and subclauses. If you’re 
joining a table or a query to itself, you must use correlation names to clarify which copy 
of the table or query you’re referring to in the select list, join criteria, or selection crite-
ria. If a table name or a query name is also an SQL reserved word (for example, Order), 
you must enclose the name in brackets. In SQL Server, you must enclose the name of a 
table or query that is also an SQL reserved word in double quotes. Note that when you 
open a query in an Access project, Access includes the required SET QUOTED IDEN-
TIFIER ON command in the command string. However, if you execute an SQL Server 
query from a desktop database with a pass-through query, you must include this com-
mand in the pass-through query.

When you list more than one table or query without join criteria, the source is the Car-
tesian product of all the tables. For example, FROM TableA, TableB instructs the database 
to search all the rows of TableA matched with all the rows of TableB. Unless you specify 
other restricting criteria, the number of logical rows that the database processes could 
equal the number of rows in TableA times the number of rows in TableB. The database 
then returns the rows in which the selection criteria specified in the WHERE and HAV-
ING clauses are True. (See FROM Clause in this article for further details about specify-
ing joins.)

You can further define which rows the database includes in the output recordset by 
specifying ALL, DISTINCT, DISTINCTROW (in a desktop database only), TOP n, or 
TOP n PERCENT. ALL includes all rows that match the search criteria from the source 
tables, including potential duplicate rows. DISTINCT requests that the database return 
only rows that are different from any other row. You cannot update any columns in a 
query that uses DISTINCT because the database can’t identify which of several poten-
tially duplicate rows you intend to update.

A
rticle 2

A58 Article 2 Understanding SQL

ZR2623252.indd   58 2/23/2007   9:45:40 PM



DISTINCTROW (the default in Access 7.0 and earlier) requests that Access return only 
rows in which the concatenation of the primary keys from all tables supplying output 
columns is unique. Depending on the columns you select, you might see rows in the 
result that contain duplicate values, but each row in the result is derived from a distinct 
combination of rows in the underlying tables. DISTINCTROW is significant only when 
you include a join in a query and do not include output columns from all tables. For 
example, the statement

SELECT tblContacts.WorkStateOrProvince 

FROM tblContacts 

  INNER JOIN tblContactProducts 

  ON tblContacts.ContactID = tblContactProducts.ContactID 

WHERE tblContactProducts.DateSold > #11/1/2006#;

returns 92 rows in the ContactsDataCopy.accdb sample database—one row for each 
product owned by a contact. On the other hand, the following statement:

SELECT DISTINCTROW tblContacts.WorkStateOrProvince 

FROM tblContacts 

  INNER JOIN tblContactProducts 

  ON tblContacts.ContactID = tblContactProducts.ContactID 

WHERE tblContactProducts.DateSold > #11/1/2006#;

returns only 29 rows—one for each distinct row in the tblContacts table, the only table 
with output columns. The equivalent of the second example in ANSI-standard SQL is as 
follows:

SELECT tblContacts.WorkStateOrProvince 

FROM tblContacts 

WHERE tblContacts.ContactID 

  IN (Select tblContactProducts.ContactID FROM tblContactProducts 

  WHERE tblContactProducts.DateSold > '2006-11-01');

We suspect Microsoft implemented DISTINCTROW in version 1 because the first 
release of Access did not support subqueries.

Specify TOP n or TOP n PERCENT to request that the recordset contain only the first 
n or first n percent of rows. In general, you should specify an ORDER BY clause when 
you use TOP in order to indicate the sequence that defines which rows are first, or 
top. The parameter n must be a positive integer and must be less than or equal to 100 
if you include the PERCENT keyword. If you do not include an ORDER BY clause, the 
sequence of rows returned is undefined. In a TOP query, if the nth and any rows imme-
diately following the nth row are duplicates, the database returns the duplicates; thus, 
the recordset might have more than n rows. Note that if you specify an order, using TOP 
does not cause the query to execute any faster; the database must still solve the entire 
query, order the rows, and return the top rows.

When you include a GROUP BY clause, the select list must be made up of one or more 
of the SQL aggregate functions or one or more of the column names specified in the 
GROUP BY clause. A column name in a GROUP BY clause can refer to any column from 
any table in the FROM clause, even if the column is not named in the select list. If you 

 SQL SELECT Queries A59

A
rt

ic
le

 2

ZR2623252.indd   59 2/23/2007   9:45:40 PM



want to refer to a calculated expression in the GROUP BY clause, you must assign an 
output column name to the expression in the select list and then refer to that name in 
the GROUP BY clause. If the GROUP BY clause is preceded by a WHERE clause, the 
database forms the groups from the rows selected after it applies the WHERE clause.

If you use a HAVING clause but do not include a GROUP BY clause, the select list must 
be formed using SQL aggregate functions. If you include a GROUP BY clause preceding 
the HAVING clause, the HAVING search condition applies to each of the groups formed 
by equal values in the specified columns. If you do not include a GROUP BY clause, 
the HAVING search condition applies to the entire logical table defined by the SELECT 
statement.

You use column names or relative output column numbers to specify the columns on 
whose values the rows returned are ordered. (If you use relative output column num-
bers, the first output column is 1.) You can specify multiple columns in the ORDER BY 
clause. When you specify multiple columns, the list is ordered primarily by the first 
column. If rows exist for which the values of that column are equal, they are ordered 
by the next column in the ORDER BY list, and so on. When multiple rows contain the 
matching values in all the columns in the ORDER BY clause, the database can return 
the matching rows in any order. You can specify ascending (ASC) or descending 
(DESC) order for each column. If you do not specify ASC or DESC, ASC is assumed. 
Using an ORDER BY clause in a SELECT statement is the only means of defining the 
sequence of the returned rows.

In an .mdb-format desktop database that has user-level security implemented, the per-
son running the query not only must have rights to the query but also must have the 
appropriate rights to the tables used in the query. (These rights include reading data to 
select rows and updating, inserting, and deleting data using the query.) If your applica-
tion has multiple users, you might want to secure the tables so that no user has direct 
access to any of the tables and all users can still run queries defined by you. Assuming 
you’re the owner of both the queries and the tables, you can deny access to the tables 
but allow access to the queries. To make sure that the queries run properly, you must 
add the WITH OWNERACCESS OPTION clause to allow users the same access rights 
as the table owner when accessing the data via the query. Access 2007 does not support 
user-level security in .accdb-format databases.

If the select-list references a multi-value field, the query returns the individual values 
separated by commas. A query datasheet provides a combo box that you can use to 
edit the multiple values. If you bind the column to a combo box control on a form, 
you can edit the field on the form. To edit the individual values in separate rows, use 
field-name.Value in your query. For records in the table that have multiple values in the 
field, the query returns one row per value. The effect is identical to linking to a related 
many-to-many lookup table using a join. (See FROM Clause in this article for details 
about defining a join in a query.) Note, however, that when you ask for field-name.Value 
from more than one multi-value column in a table, the resulting query is not updatable 
because the query returns the Cartesian product of the multiple values in the two fields 
for each row in the source table.

A
rticle 2

A60 Article 2 Understanding SQL

ZR2623252.indd   60 2/23/2007   9:45:40 PM



If the select-list contains an Attachment data type, the query datasheet provides an 
attachment control to allow you to edit the data. You can also edit the data if you bind 
the fi eld to an attachment control in a form. You can individually reference one of the 
three properties of an attachment fi eld: fi eld-name.FileData, fi eld-name.FileName, or 
fi eld-name.FileType. All three properties return one row per separate attachment for 
each record in the source table, but you cannot update the values. The FileData prop-
erty returns the binary attached fi le, the FileName property returns the original name 
of the fi le, and the FileType property returns the fi le extension.

Examples

To select information about all companies and contacts and any products purchased, 
enter the following (qxmplAllCompanyContactsAnyProducts):

SELECT tblCompanies.CompanyName, tblContacts.FirstName, 

    tblContacts.LastName, CP.ProductName, CP.DateSold, CP.SoldPrice

  FROM ((tblCompanies 

    INNER JOIN tblCompanyContacts 

    ON tblCompanies.CompanyID = tblCompanyContacts.CompanyID) 

    INNER JOIN tblContacts 

    ON tblContacts.ContactID = tblCompanyContacts.ContactID) 

    LEFT JOIN 

      (SELECT tblContactProducts.ContactID, tblProducts.ProductName, 

        tblContactProducts.DateSold, tblContactProducts.SoldPrice

      FROM tblProducts 

      INNER JOIN tblContactProducts  

      ON tblProducts.ProductID = tblContactProducts.ProductID

      WHERE tblProducts.TrialVersion = 0) AS CP 

    ON tblContacts.ContactID = CP.ContactID;

Note

If you save the preceding query in a previous version of Access, when you open the query 

in Design view, you’ll fi nd that Access saves the inner <select-statement> with brackets:

[SELECT tblContactProducts.ContactID, tblProducts.ProductName, 

tblContactProducts.DateSold, tblContactProducts.SoldPrice

FROM tblProducts 

INNER JOIN tblContactProducts  

ON tblProducts.ProductID = tblContactProducts.ProductID

WHERE tblProducts.TrialVersion = 0]. AS CP

This is the internal syntax supported by the JET database engine installed with Access 

2003 and earlier. The new Access Database Engine (ACE) supplied with Access 2007 no 

longer modifi es the SQL—you’ll fi nd the sample query saved exactly as stated in the 

example without brackets.

Note

If you save the preceding query in a previous version of Access, when you open the query 

in Design view, you’ll fi nd that Access saves the inner <select-statement> with brackets:

[SELECT tblContactProducts.ContactID, tblProducts.ProductName, 

tblContactProducts.DateSold, tblContactProducts.SoldPrice

FROM tblProducts 

INNER JOIN tblContactProducts  

ON tblProducts.ProductID = tblContactProducts.ProductID

WHERE tblProducts.TrialVersion = 0]. AS CP

This is the internal syntax supported by the JET database engine installed with Access 

2003 and earlier. The new Access Database Engine (ACE) supplied with Access 2007 no 

longer modifi es the SQL—you’ll fi nd the sample query saved exactly as stated in the 

example without brackets.

 SQL SELECT Queries A61

A
rt

ic
le

 2

ZR2623252.indd   61 2/23/2007   9:45:41 PM



To fi nd the average and maximum prices for products by category name, enter the fol-
lowing (qxmplCategoryAvgMaxPrice):

SELECT tblProducts.CategoryDescription, 

    Avg(tblProducts.UnitPrice) AS AvgOfUnitPrice, 

    Max(tblProducts.UnitPrice) AS MaxOfUnitPrice

  FROM tblProducts

  WHERE tblProducts.TrialVersion = 0

  GROUP BY tblProducts.CategoryDescription;

To fi nd invoice amount for all invoices that total more than $150, enter the following 
(qxmplTotalInvoices>150):

SELECT tblCompanies.CompanyName, tblInvoices.InvoiceID, 

    tblInvoices.InvoiceDate, Sum(tblContactProducts.SoldPrice) AS InvoiceTotal

  FROM (tblCompanies 

    INNER JOIN tblInvoices 

    ON tblCompanies.CompanyID = tblInvoices.CompanyID) 

    INNER JOIN tblContactProducts 

    ON tblInvoices.InvoiceID = tblContactProducts.InvoiceID

  GROUP BY tblCompanies.CompanyName, tblInvoices.InvoiceID, 

    tblInvoices.InvoiceDate

HAVING Sum(tblContactProducts.SoldPrice) > 150;

To calculate the total for all invoices and list the result for each customer and invoice in 
descending sequence by order total, enter the following (qxmplOrderTotalSorted):

SELECT TOP 100 PERCENT tblCompanies.CompanyName, tblInvoices.InvoiceID, 

    tblInvoices.InvoiceDate, Sum(tblContactProducts.SoldPrice) AS InvoiceTotal

  FROM (tblCompanies 

    INNER JOIN tblInvoices 

    ON tblCompanies.CompanyID = tblInvoices.CompanyID) 

    INNER JOIN tblContactProducts 

    ON tblInvoices.InvoiceID = tblContactProducts.InvoiceID

  GROUP BY tblCompanies.CompanyName, tblInvoices.InvoiceID, 

    tblInvoices.InvoiceDate

  ORDER BY Sum(tblContactProducts.SoldPrice) DESC;

Note
The TOP keyword is optional in a desktop database (.accdb). In SQL Server, you can also 

specify the calculated column alias name in the ORDER BY clause: ORDER BY InvoiceTotal 

DESC. In a desktop database, you must repeat the calculation expression as shown in the 

example.

Note
The TOP keyword is optional in a desktop database (.accdb). In SQL Server, you can also 

specify the calculated column alias name in the ORDER BY clause: ORDER BY InvoiceTotal 

DESC. In a desktop database, you must repeat the calculation expression as shown in the 

example.
A

rticle 2

A62 Article 2 Understanding SQL

ZR2623252.indd   62 2/23/2007   9:45:42 PM



In a desktop database (.accdb), to create a mailing list for all companies and all 
 contacts, sorted in ascending order by postal code, enter the following (qxmplSorted-
MailingList):

SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City, 

    tblCompanies.StateOrProvince, tblCompanies.PostalCode

  FROM tblCompanies

UNION 

SELECT [FirstName] & " " & ([MiddleInit]+". ") & [LastName] AS Contact, 

    tblContacts.HomeAddress, tblContacts.HomeCity, 

    tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode

  FROM tblContacts

ORDER BY 5;

Note
If you decide to use column names in the ORDER BY clause of a UNION query, the data-

base derives the column names from the names returned by the fi rst query. In this exam-

ple, you could change the ORDER BY clause to read ORDER BY PostalCode.

To create the same mailing list in a view or in-line function in an SQL Server database, 
enter the following:

SELECT TOP 100 PERCENT CompanyName, Address, City, 

    StateOrProvince, PostalCode

FROM

(SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City, 

    tblCompanies.StateOrProvince, tblCompanies.PostalCode

  FROM tblCompanies

UNION 

SELECT tblContacts.FirstName + ' ' + 

    IsNull(tblContacts.MiddleInit + '. ', '') + 

    tblContacts.LastName AS Contact, 

    tblContacts.HomeAddress, tblContacts.HomeCity, 

    tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode

  FROM tblContacts) AS U

ORDER BY 5;

Notice that you must UNION the rows fi rst and then select and sort them all.

See also FROM Clause, GROUP BY Clause, HAVING Clause, INSERT Statement, Search-
 Condition, and UNION Query Operator in this article.

Note
If you decide to use column names in the ORDER BY clause of a UNION query, the data-

base derives the column names from the names returned by the fi rst query. In this exam-

ple, you could change the ORDER BY clause to read ORDER BY PostalCode.

 Condition, and UNION Query Operator in this article.
See also FROM Clause, GROUP BY Clause, HAVING Clause, INSERT Statement, Search-
 Condition, and UNION Query Operator in this article.

 SQL SELECT Queries A63

A
rt

ic
le

 2

ZR2623252.indd   63 2/23/2007   9:45:42 PM



Subquery
Selects from a single column any number of values or no values at all for comparison in 
a predicate. You can also use a subquery that returns a single value in the select list of a 
SELECT clause.

Syntax

(SELECT [ALL | DISTINCT | DISTINCTROW | TOP number 
       [PERCENT]] <select-list> 
  FROM {table-name [[AS] correlation-name] |  
    select-query-name [[AS] correlation-name] |  
    <joined table>},... 

  [WHERE <search-condition>] 
  [GROUP BY column-name,...] 
  [HAVING <search-condition>] 
  [ORDER BY {column-name [ASC | DESC]},...])

where select-list is

{* | {<expression> | table-name.* |  
  query-name.* | correlation-name.*}}

and where <joined table> is

({table-name [[AS] correlation-name] | 
  select-query-name [[AS] correlation-name] | 
  (<select-statement>) AS correlation-name | 
  <joined table>} 

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN  
  {table-name [[AS] correlation-name] | 
  select-query-name [[AS] correlation-name] | 
  (<select-statement>) AS correlation-name | 
  <joined table>} 

ON <join-specification>)

Notes

You can use the special asterisk (*) character in the <select-list> of a subquery only when 
the subquery is used in an EXISTS predicate or when the FROM clause within the sub-
query refers to a single table or query that contains only one column.

You can supply a correlation name for each table name or query name and use this 
correlation name as an alias for the full table name when qualifying column names 
in the <select-list>, in the <join-specification>, or in the WHERE clause and subclauses. 
If you’re joining a table or a query to itself, you must use correlation names to clarify 
which copy of the table or query you’re referring to in the select list, join criteria, or 
selection criteria. You must also use a correlation name if one of the tables in the FROM 
clause is the same as a table in the outer query. If a table name or a query name is also 
an SQL reserved word (for example, Order), you must enclose the name in brackets. In 
SQL Server, you must enclose the name of a table or query that is also an SQL reserved 

A
rticle 2

A64 Article 2 Understanding SQL

ZR2623252.indd   64 2/23/2007   9:45:43 PM



word in double quotes. Note that when you open a query in an Access project, Access 
includes the required SET QUOTED IDENTIFIER ON command in the command 
string. However, if you execute an SQL Server query from a desktop database with a 
pass-through query, you must include this command in the pass-through query.

When you list more than one table or query without join criteria, the source is the Car-
tesian product of all the tables. For example, FROM TableA, TableB instructs the database 
to search all the rows of TableA matched with all the rows of TableB. Unless you specify 
other restricting criteria, the number of logical rows that the database processes could 
equal the number of rows in TableA times the number of rows in TableB. The database 
then returns the rows in which the selection criteria specified in the WHERE and HAV-
ING clauses are True. (See also FROM Clause in this article for further details about 
specifying joins.)

You can further define which rows the database includes in the output recordset by 
specifying ALL, DISTINCT, DISTINCTROW (in a desktop database only), TOP n, or 
TOP n PERCENT. ALL includes all rows that match the search criteria from the source 
tables, including potential duplicate rows. DISTINCT requests that the database return 
only rows that are different from any other row.

DISTINCTROW (the default in Access version 7.0 and earlier) requests that Access 
return only rows in which the concatenation of the primary keys from all tables sup-
plying output columns is unique. Depending on the columns you select, you might see 
rows in the result that contain duplicate values, but each row in the result is derived 
from a distinct combination of rows in the underlying tables. DISTINCTROW is sig-
nificant only when you include a join in a query and do not include output columns 
from all tables. (See SELECT Statement in this article for more information about 
 DISTINCTROW.)

Specify TOP n or TOP n PERCENT to request that the recordset contain only the first n 
or first n percent of rows. In general, you should specify an ORDER BY clause when you 
use TOP in order to indicate the sequence that defines which rows are first, or top. The 
parameter n must be an integer and must be less than or equal to 100 if you include the 
PERCENT keyword. If you do not include an ORDER BY clause, the sequence of rows 
returned is undefined. In a TOP query, if the nth and any rows immediately following 
the nth row are duplicates, the database returns the duplicates; thus, the recordset 
might have more than n rows. Note that if you specify an order, using TOP does not 
cause the query to execute any faster; the database must still solve the entire query, 
order the rows, and return the top rows.

In the search condition of the WHERE clause of a subquery, you can use an outer refer-
ence to refer to the columns of any table or query that is defined in the outer queries. 
You must qualify the column name if the table or query reference is ambiguous.

A column name in the GROUP BY clause can refer to any column from any table in 
the FROM clause, even if the column is not named in the <select-list>. If the GROUP BY 
clause is preceded by a WHERE clause, the database creates the groups from the rows 
selected after the application of the WHERE clause.

 SQL SELECT Queries A65

A
rt

ic
le

 2

ZR2623252.indd   65 2/23/2007   9:45:43 PM



When you include a GROUP BY or HAVING clause in a SELECT statement, the select 
list must be made up of either SQL aggregate functions or column names specifi ed in 
the GROUP BY clause. If a GROUP BY clause precedes a HAVING clause, the HAVING 
clause’s search condition applies to each of the groups formed by equal values in the 
specifi ed columns. If you do not include a GROUP BY clause, the HAVING clause’s 
search condition applies to the entire logical table defi ned by the SELECT statement.

Examples

To fi nd all contacts who own at least one product, enter the following (qxmplContact-
SomeProduct):

SELECT tblContacts.FirstName, tblContacts.MiddleInit, tblContacts.LastName

  FROM tblContacts

  WHERE EXISTS 

    (SELECT * 

      FROM tblContactProducts 

      INNER JOIN tblProducts

      ON tblContactProducts.ProductID = tblProducts.ProductID

      WHERE tblContactProducts.ContactID = tblContacts.ContactID

      AND tblProducts.TrialVersion = 0);

Note
In this example, the inner subquery makes a reference to the tblContacts table in the 

SELECT statement by referring to a column in the outer table (tblContacts.ContactID). 

This forces the subquery to be evaluated for every row in the SELECT statement, which 

might not be the most effi cient way to achieve the desired result. (This type of sub-

query is also called a correlated subquery.) Whenever possible, the database query plan 

optimizer solves the query effi ciently by reconstructing the query internally as a join 

between the source specifi ed in the FROM clause and the subquery. In many cases, you 

can perform this reconstruction yourself, but the purpose of the query might not be as 

clear as when you state the problem using a subquery.

To select contacts who fi rst purchased a product before 2007 and list them in ascending 
order by postal code, enter the following (qxmplContactsPurchaseBefore2007):

SELECT TOP 100 PERCENT tblContacts.FirstName, tblContacts.MiddleInit, 

    tblContacts.LastName, tblContacts.HomeCity, tblContacts.HomePostalCode

  FROM tblContacts

  WHERE #01/01/2007# >

    (SELECT Min(tblContactProducts.DateSold) 

      FROM tblContactProducts

      WHERE tblContactProducts.ContactID = tblContacts.ContactID)

  ORDER BY tblContacts.HomePostalCode;

Note
In this example, the inner subquery makes a reference to the tblContacts table in the 

SELECT statement by referring to a column in the outer table (tblContacts.ContactID). 

This forces the subquery to be evaluated for every row in the SELECT statement, which 

might not be the most effi cient way to achieve the desired result. (This type of sub-

query is also called a correlated subquery.) Whenever possible, the database query plan correlated subquery.) Whenever possible, the database query plan correlated subquery
optimizer solves the query effi ciently by reconstructing the query internally as a join 

between the source specifi ed in the FROM clause and the subquery. In many cases, you 

can perform this reconstruction yourself, but the purpose of the query might not be as 

clear as when you state the problem using a subquery.

A
rticle 2

A66 Article 2 Understanding SQL

ZR2623252.indd   66 2/23/2007   9:45:44 PM



Note
The previous query also uses a correlated subquery.

To fi nd the products whose price is greater than any of the support products, enter the 
following (qxmplProductsPrice>AnySupport):

SELECT tblProducts.ProductID, tblProducts.ProductName, tblProducts.UnitPrice

  FROM tblProducts

  WHERE tblProducts.UnitPrice >Any 

    (SELECT tblProducts.UnitPrice 

      FROM tblProducts 

      WHERE tblProducts.CategoryDescription = "Support");

See also Expression, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE, NULL, and Quanti-
fi ed), and SELECT Statement in this article.

TRANSFORM Statement
In a desktop database, produces a crosstab query that lets you summarize a single value 
by using the values found in a specifi ed column or in an expression as the column 
headers and using other columns or expressions to defi ne the grouping criteria to form 
rows. The result looks similar to a spreadsheet and is most useful as input to a graph 
object. This is an Access extension to standard SQL.

Syntax

TRANSFORM <aggregate-function-expression>
  <select-statement>

PIVOT <expression>
[IN (<column-value-list>)]

where <aggregate-function-expression> is an expression created with one of the aggregate 
functions, <select-statement> contains a GROUP BY clause, and <column-value-list> is 
a list of required values expected to be returned by the PIVOT expression, enclosed 
in quotes and separated by commas. (You can use the IN clause to force the output 
sequence of the columns.)

Notes

The <aggregate-function-expression> parameter is the value that you want to appear in the 
“body” of the crosstab datasheet. PIVOT <expression> defi nes the column or expression 
that provides the column headings in the crosstab result. You might, for example, use 
this value to provide a list of months with aggregate rows defi ned by product catego-
ries in the <select-statement> GROUP BY clause. You can use more than one column or 
expression in the SELECT statement to defi ne the grouping criteria for rows.

Note
The previous query also uses a correlated subquery.

See also Expression, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE, NULL, and Quanti-
fi ed), and SELECT Statement in this article.

 SQL SELECT Queries A67

A
rt

ic
le

 2

ZR2623252.indd   67 2/23/2007   9:45:44 PM



Example

To produce a total sales amount for each month in the year 2007, categorized by prod-
uct, enter the following (qxmpl2007SalesByProductXtab).

TRANSFORM Sum(tblContactProducts.SoldPrice) AS SumOfSoldPrice

  SELECT tblProducts.ProductID, tblProducts.ProductName, 

    Sum(tblContactProducts.SoldPrice) AS TotSales

  FROM tblProducts 

    INNER JOIN tblContactProducts 

    ON tblProducts.ProductID = tblContactProducts.ProductID

  GROUP BY tblProducts.ProductID, tblProducts.ProductName

PIVOT Format([DateSold],"mmm yyyy") 

  IN ("Jan 2007","Feb 2007","Mar 2007","Apr 2007","May 2007",

    "Jun 2007","Jul 2007","Aug 2007","Sep 2007",

    "Oct 2007","Nov 2007","Dec 2007");

Note
This example shows a special use of the IN predicate to defi ne not only which months 

should be selected but also the sequence in which Access displays the months in the 

resulting recordset.

See also GROUP BY Clause, HAVING Clause, SELECT Statement, and Total Functions in this 
article.

UNION Query Operator
Produces a result table that contains the rows returned by both the fi rst SELECT state-
ment and the second SELECT statement.

Syntax

<select-statement>

UNION [ALL]
  <select-statement>

[ORDER BY {column-name | column-number 
[ASC | DESC]},...]

Notes

When you specify ALL, the database returns all rows in both logical tables. When you 
do not specify ALL, the database eliminates duplicate rows. The tables returned by each 

Note
This example shows a special use of the IN predicate to defi ne not only which months 

should be selected but also the sequence in which Access displays the months in the 

resulting recordset.

See also GROUP BY Clause, HAVING Clause, SELECT Statement, and Total Functions in this 
article.

A
rticle 2

A68 Article 2 Understanding SQL

ZR2623252.indd   68 2/23/2007   9:45:45 PM



<select-statement> must contain an equal number of columns, and each column must 
have identical attributes.

You must not use the ORDER BY clause in the <select-statements> that are joined by 
query operators; however, you can include a single ORDER BY clause at the end of a 
statement that uses one or more query operators. This action will apply the specifi ed 
order to the result of the entire statement. The database derives the column names of 
the output from the column names returned by the fi rst <select-statement>. If you want to 
use column names in the ORDER BY clause, be sure to use names from the fi rst query. 
You can also use the output column numbers to defi ne ORDER BY criteria.

In a project fi le, you can include the ORDER BY clause at the end of the statement in a 
stored procedure, but you cannot include this clause in a view or in-line function. To 
sort a UNION in a view or in-line function, you must create a view on the query con-
taining the UNION and then sort the view. You can also embed the UNION query in a 
FROM clause of a query and then sort the result.

You can combine multiple SELECT statements using UNION to obtain complex results. 
You can also use parentheses to infl uence the sequence in which the database applies 
the operators, as shown here:

SELECT...UNION (SELECT...UNION SELECT...)

Example

In a desktop database (.accdb), to create a mailing list for all companies and all 
contacts, sorted in ascending order by postal code, enter the following (qxmplSorted-
MailingList):

SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City, 

    tblCompanies.StateOrProvince, tblCompanies.PostalCode

  FROM tblCompanies

UNION 

SELECT [FirstName] & " " & ([MiddleInit]+". ") & [LastName] AS Contact, 

    tblContacts.HomeAddress, tblContacts.HomeCity, 

    tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode

  FROM tblContacts

ORDER BY 5;

Note
If you decide to use column names in the ORDER BY clause of a UNION query, the data-

base derives the column names from the names returned by the fi rst query. In this exam-

ple, you could change the ORDER BY clause to read ORDER BY PostalCode.

Note
If you decide to use column names in the ORDER BY clause of a UNION query, the data-

base derives the column names from the names returned by the fi rst query. In this exam-

ple, you could change the ORDER BY clause to read ORDER BY PostalCode.

 SQL SELECT Queries A69

A
rt

ic
le

 2

ZR2623252.indd   69 2/23/2007   9:45:45 PM



To create the same mailing list in a view or in-line function in an SQL Server database, 
enter the following:

SELECT TOP 100 PERCENT CompanyName, Address, City, 

    StateOrProvince, PostalCode

FROM

(SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City, 

    tblCompanies.StateOrProvince, tblCompanies.PostalCode

  FROM tblCompanies

UNION 

SELECT tblContacts.FirstName + ' ' + 

    IsNull(tblContacts.MiddleInit + '. ', '') + 

    tblContacts.LastName AS Contact, 

    tblContacts.HomeAddress, tblContacts.HomeCity, 

    tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode

  FROM tblContacts) AS U

ORDER BY 5;

Notice that you must UNION the rows fi rst and then select and sort them all.

See also ORDER BY Clause and SELECT Statement in this article.

WHERE Clause
Specifi es a search condition in an SQL statement or an SQL clause. The DELETE, 
SELECT, and UPDATE statements and the subquery containing the WHERE clause 
operate only on those rows that satisfy the condition.

Syntax

WHERE <search-condition>

Notes

The database applies the <search-condition> to each row of the logical table assembled 
as a result of executing the previous clauses, and it rejects those rows for which the 
<search-condition> does not evaluate to True. If you use a subquery within a predicate in 
the <search-condition> (often called an inner query), the database must fi rst execute the 
subquery before it evaluates the predicate.

In a subquery, if you refer to a table or a query that you also use in an outer FROM 
clause (often called a correlated subquery), the database must execute the subquery for 
each row being evaluated in the outer table. If you do not use a reference to an outer 
table in a subquery, the database must execute the subquery only once. A correlated 
subquery can also be expressed as a join, which generally executes more effi ciently. If 
you include a predicate in the <search-condition> in the form

<expression> <comparison-operator> <subquery>

the database returns an error if the subquery returns no rows.

See also ORDER BY Clause and SELECT Statement in this article.

A
rticle 2

A70 Article 2 Understanding SQL

ZR2623252.indd   70 2/23/2007   9:45:46 PM



The order of evaluation of the logical operators used in the <search-condition> is NOT, 
AND, OR, XOR (exclusive OR), EQV (equivalence), and then IMP (implication). (SQL 
Server does not support the XOR, EQV, or IMP logical operators.) You can include addi-
tional parentheses to infl uence the order in which the database processes expressions.

Examples

In a desktop database, to fi nd all products for which the unit price is greater than $100 
and for which the category description number is equal to Multi-User or the product 
has a prerequisite, but not both, enter the following (qxmplXOR):

SELECT tblProducts.ProductID, tblProducts.ProductName, 

    tblProducts.CategoryDescription, tblProducts.UnitPrice, 

    tblProducts.PreRequisite

  FROM tblProducts

  WHERE tblProducts.UnitPrice>100 

    AND ((tblProducts.CategoryDescription = "Multi-User") 

    XOR (tblProducts.PreRequisite Is Not Null));

In a project fi le, to fi nd all products for which the unit price is greater than $100 and for 
which the category description number is equal to Multi-User or the product has a pre-
requisite, but not both, enter the following:

SELECT tblProducts.ProductID, tblProducts.ProductName, 

    tblProducts.CategoryDescription, tblProducts.UnitPrice, 

    tblProducts.PreRequisite

  FROM tblProducts

  WHERE tblProducts.UnitPrice>100 

    AND ((tblProducts.CategoryDescription = "Multi-User") 

    OR (tblProducts.PreRequisite Is Not Null)) 

    AND NOT ((tblProducts.CategoryDescription = "Multi-User") 

    AND (tblProducts.PreRequisite Is Not Null));

See also DELETE Statement, Expression, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE, 
NULL, and Quantifi ed), Search-Condition, SELECT Statement, Subquery, and UPDATE State-
ment in this article.

SQL Action Queries
Use SQL action queries to delete, insert, or update data or to create a new table from 
existing data. Action queries are particularly powerful because they allow you to oper-
ate on sets of data, not single rows. For example, an UPDATE statement or a DELETE 
statement affects all rows in the underlying tables that meet the selection criteria you 
specify.

See also DELETE Statement, Expression, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE, 
NULL, and Quantifi ed), Search-Condition, SELECT Statement, Subquery, and UPDATE State-

 SQL Action Queries A71

A
rt

ic
le

 2

ZR2623252.indd   71 2/23/2007   9:45:46 PM



DELETE Statement
Deletes one or more rows from a table or a query. The WHERE clause is optional. If you 
do not specify a WHERE clause, all rows are deleted from the table or the query that 
you specify in the FROM clause. If you specify a WHERE clause, the database applies 
the search condition to each row in the table or the query, and only those rows that 
evaluate to True are deleted.

Syntax

DELETE [<select-list>] 
  FROM {table-name [[AS] correlation-name] |  
    select-query-name [[AS] correlation-name] |  
    <joined table>},... 

  [IN <source specification>] 
  [WHERE <search-condition>];

where <select-list> is

[* | table-name.*]

and where <joined table> is

({table-name [[AS] correlation-name] | 
  select-query-name [[AS] correlation-name] | 
  (<select-statement>) AS correlation-name | 
  <joined table>} 

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN  
  {table-name [[AS] correlation-name] | 
  select-query-name [[AS] correlation-name] | 
  (<select-statement>) AS correlation-name | 
  <joined table>} 

ON <join-specification>)

Notes

When you specify a query name in a DELETE statement, the query must not be con-
structed using the UNION query operator. The query also must not contain an SQL 
aggregate function, the DISTINCT keyword, a GROUP BY or HAVING clause, or a sub-
query that references the same base table as the DELETE statement.

When you join two or more tables in the FROM clause, you can delete rows only from 
the many side of the relationship if the tables are related one to many; if the tables are 
related one to one, you can delete rows from either side. When you include more than 
one table in the FROM clause, you must also specify from which table the rows are to be 
deleted by using table name.* in the <select-list>. When you specify only one table in the 
FROM clause, you do not need to provide a <select-list>.

You can supply a correlation name for each table or query name. You can use this cor-
relation name as an alias for the full table name when qualifying column names in the 

A
rticle 2

A72 Article 2 Understanding SQL

ZR2623252.indd   72 2/23/2007   9:45:46 PM



WHERE clause and in subclauses. You must use a correlation name when referring to a 
column name that occurs in more than one table in the FROM clause.

If you use a subquery in the <search-condition>, you must not reference the target table or 
the query or any underlying table of the query in the subquery.

Examples

To delete all rows in the tblContactProducts table, enter the following:

DELETE FROM tblContactProducts;

To delete all rows in the tblContactEventsHistory table for events that occurred before 
January 1, 2003, enter the following (qxmplDeleteOldEventHistory):

DELETE tblContactEventsHistory.* 

  FROM tblContactEventsHistory

  WHERE tblContactEventsHistory.ContactDateTime < #01/01/2003#;

See also IN Clause, INSERT Statement, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE, 
NULL, and Quantifi ed), Search-Condition, and Subquery in this article.

INSERT Statement (Append Query)
Inserts one or more new rows into the specifi ed table or query. When you use the 
 VALUES clause, the database inserts only a single row. If you use a SELECT statement, 
the number of rows inserted equals the number of rows returned by the SELECT 
 statement.

Syntax

INSERT INTO table-name [({column-name},...)]
  [IN <source specification>]
  {VALUES({literal},...) | select-statement}
  [WHERE <search-condition>];

Notes

If you do not include a column name list, you must supply values for all columns 
defi ned in the table in the order in which they were declared in the table defi nition. If 
you include a column name list, you must supply values for all columns in the list, and 
the values must be compatible with the receiving column attributes. You must include 
in the list all columns in the underlying table whose Required attribute is Yes and that 
do not have a default value.

If you include an IN clause in both the INSERT and the FROM clause of the SELECT 
statement, both must refer to the same source database.

See also IN Clause, INSERT Statement, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE, 
NULL, and Quantifi ed), Search-Condition, and Subquery in this article.

 SQL Action Queries A73

A
rt

ic
le

 2

ZR2623252.indd   73 2/23/2007   9:45:46 PM



If you supply values by using a SELECT statement, the statement’s FROM clause cannot 
have the target table of the INSERT as its table name or as an underlying table. The tar-
get table also cannot be used in any subquery.

You cannot include an attachment field in the list of column names for an INSERT into 
a table. If the target table contains an attachment field, you must include the column-
name list and specify any other fields into which you want to insert data. It is not pos-
sible to insert data into an attachment field using SQL.

You cannot include a multi-value field in the list of column names for an INSERT into a 
table unless the multi-value field is the only field in the column-name list and you include 
the Value property of the field. You can include a WHERE clause only when the target 
of the INSERT is the Value property of a single multi-value field. In this case you use 
the WHERE clause to specify which rows in the parent table should be affected by the 
INSERT. If you use a select-statement as the source of the inserted values when the target 
is the hidden recordset represented by the Value property of a multi-value field, the 
WHERE clause applies to the target table, not the select-statement, unless you can qual-
ify the column names in the predicate to make it clear that the WHERE clause applies 
to the select-statement. You cannot include a WHERE clause filtering the select-statement 
and a second WHERE clause filtering the target table.

Because Access allows you to define column-value constraints (validation rules in a 
desktop database), table constraints (validation rules in a desktop database), and ref-
erential integrity checks, any values that you insert must pass these validations before 
Access will allow you to run the query.

Examples

To insert a new row in the tblProducts table, enter the following:

INSERT INTO tblProducts (ProductName,  

       CategoryDescription, UnitPrice) 

VALUES ('Support Renewal', 'Multi-User', 99);

To insert old event records into a history table and avoid duplicates, enter the following 
(qxmplArchiveContactEventsByDate):

PARAMETERS LastDateToKeep DateTime; 

INSERT INTO tblContactEventsHistory  

    (ContactID, ContactDateTime, ContactEventType, ContactNotes ) 

  SELECT tblContactEvents.ContactID, tblContactEvents.ContactDateTime,  

      tlkpContactEventTypes.ContactEventTypeDescription,  

      tblContactEvents.ContactNotes 

    FROM tlkpContactEventTypes  

    INNER JOIN (tblContactEvents  

      LEFT JOIN tblContactEventsHistory  

      ON (tblContactEvents.ContactID = tblContactEventsHistory.ContactID)  

        AND (tblContactEvents.ContactDateTime =  

            tblContactEventsHistory.ContactDateTime))  

    ON tlkpContactEventTypes.ContactEventTypeID =  

       tblContactEvents.ContactEventTypeID 

A
rticle 2

A74 Article 2 Understanding SQL

ZR2623252.indd   74 2/23/2007   9:45:46 PM



  WHERE (tblContactEvents.ContactDateTime<[LastDateToKeep])

    AND (tblContactEventsHistory.ContactID Is Null);

Although Access accepts the ANSI-standard VALUES clause, you will discover in a desk-
top database that Access 2003 and earlier converts a statement such as

INSERT INTO MyTable (ColumnA, ColumnB)

VALUES (123, "Jane Doe");

to

INSERT INTO MyTable (ColumnA, ColumnB)

SELECT 123 As Expr1, "Jane Doe" as Expr2;

Access 2007 does not convert a VALUES clause.

To add the value Sales Prospect to the ContactType multi-value fi eld of the contact in 
the tblContacts table whose last name is Smith, enter the following:

INSERT INTO tblContacts (ContactType.Value)

VALUES ("Sales Prospect")

WHERE tblContacts.LastName = "Smith";

See also DELETE Statement, IN Clause, SELECT Statement, and Subquery in this article.

SELECT . . . INTO Statement (Make-Table Query)
Creates a new table from values selected from one or more other tables. Make-table 
 queries are most useful for providing backup snapshots or for creating tables with 
rolled-up totals at the end of an accounting period.

Syntax

SELECT [ALL | DISTINCT | DISTINCTROW | 
         TOP number PERCENT]] <select-list>
INTO new-table-name
  [IN <source specification>]
  FROM {table-name [[AS] correlation-name] | 
    select-query-name [[AS] correlation-name] | 
    <joined table>},...

  [IN <source specification>]
  [WHERE <search-condition>]
  [GROUP BY column-name,...]
  [HAVING <search-condition>]
[UNION [ALL] <select-statement>]
  [[ORDER BY {column-name [ASC | DESC]},...] |
  IN <"source database name"> 
     <[source connect string]>

  [WITH OWNERACCESS OPTION];

See also DELETE Statement, IN Clause, SELECT Statement, and Subquery in this article.

 SQL Action Queries A75

A
rt

ic
le

 2

ZR2623252.indd   75 2/23/2007   9:45:47 PM



where <select-list> is

{* | {<expression> [AS output-column-name] | 
  table-name.* | query-name.* |  

  correlation-name.*},...}

and where <joined table> is

({table-name [[AS] correlation-name] |
  select-query-name [[AS] correlation-name] |
  (<select-statement>) AS correlation-name |
  <joined table>}

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN 
  {table-name [[AS] correlation-name] |
  select-query-name [[AS] correlation-name] |
  (<select-statement>) AS correlation-name |
  <joined table>}

ON <join-specification>)

Notes

A SELECT...INTO query creates a new table with the name specifi ed in new-table-name. 
If a table with that name already exists, the database displays a dialog box that asks 
you to confi rm the deletion of the table before it creates a new one in its place. The col-
umns in the new table inherit the data type attributes of the columns produced by the 
<select-list>. However, you cannot include a multi-value fi eld or an attachment fi eld in 
the <select-list>.

If you include an IN clause for both the INTO and the FROM clauses, both must refer to 
the same source database.

Example

To create a new table that summarizes all sales by product and by month, enter the fol-
lowing (qxmplProductSalesMakeTable):

SELECT tblProducts.ProductName, Format([DateSold],"yyyy mm") AS MonthSold, 

    Sum(tblContactProducts.SoldPrice) AS TotalSales 

INTO tblMonthSalesSummary

FROM tblProducts 

  INNER JOIN tblContactProducts 

  ON tblProducts.ProductID = tblContactProducts.ProductID

GROUP BY tblProducts.ProductName, Format([DateSold],"yyyy mm");

See also IN Clause, Search-Condition, and SELECT Statement in this article.See also IN Clause, Search-Condition, and SELECT Statement in this article.
A

rticle 2

A76 Article 2 Understanding SQL

ZR2623252.indd   76 2/23/2007   9:45:47 PM



UPDATE Statement
In the specified table or query, updates the selected columns (either to the value of the 
given expression or to Null) in all rows that satisfy the search condition. If you do not 
enter a WHERE clause, all rows in the specified table or query are affected.

Syntax

UPDATE {table-name [[AS] correlation-name] |  
  select-query-name [[AS] correlation-name] |  
  <joined table>},... 

[IN <source specification>] 
SET {column-name = {<expression> | NULL}},... 
[WHERE <search-condition>] 
where <joined table> is 

({table-name [[AS] correlation-name] | 
  select-query-name [[AS] correlation-name] | 
  (<select-statement>) AS correlation-name | 
  <joined table>} 

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN  
  {table-name [[AS] correlation-name] | 
  select-query-name [[AS] correlation-name] | 
  (<select-statement>) AS correlation-name | 
  <joined table>} 

ON <join-specification>)

Notes

If you provide more than one table name, you can update columns only in the table on 
the many side of a one-to-many relationship. If the tables are related one to one, you can 
update columns in either table. You can also update columns in the table on the one 
side of a relationship as long as the query returns unique rows for that table. The data-
base must be able to determine the relationship between tables or queries in order to 
update columns in a query. In general, if a table is joined by its primary key to a query, 
you can update columns in the query (because the primary key indicates that the table 
is on the one side of the join). If you want to update a table with the results of a query, 
you must insert the query results into a temporary table that can be defined with a one-
to-many or one-to-one relationship with the target table and then use the temporary 
table to update the target.

If you specify a <search-condition>, you can reference only columns found in the target 
table or query. If you use a subquery in the <search-condition>, you must not reference 
the target table or the query or any underlying table of the query in the subquery.

In the SET clause, you cannot specify a column name more than once. You also cannot 
specify the name of a multi-value field or an attachment field. Values assigned to col-
umns must be compatible with the column attributes. If you assign the Null value, the 
column cannot have the Required property set to Yes.

 SQL Action Queries A77

A
rt

ic
le

 2

ZR2623252.indd   77 2/23/2007   9:45:47 PM



Both Access and SQL Server let you defi ne column-value constraints (validation rules 
in a desktop database), table constraints (validation rules in a desktop database), and 
referential integrity checks, so any values that you update must pass these validations 
or the database will not let you run the query.

Example

To mark contacts who haven’t had a contact event since April 1, 2003, enter the follow-
ing (qxmplSetInactive):

UPDATE tblContacts 

  LEFT JOIN 

    (SELECT tblContactEvents.ContactID, tblContactEvents.ContactDateTime

      FROM tblContactEvents

      WHERE tblContactEvents.ContactDateTime>=#4/1/2003#) AS Active 

  ON tblContacts.ContactID = Active.ContactID 

SET tblContacts.Inactive = True

WHERE Active.ContactID IS NULL;

Note
Although the previous query updates rows on the one side of a relationship, the query 

is valid because the IS NULL test in conjunction with the LEFT JOIN returns exactly one 

unique row per contact.

See also Expression, IN Clause, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE, NULL, and 
Quantifi ed), Search-Condition, and WHERE Clause in this article.

Note
Although the previous query updates rows on the one side of a relationship, the query 

is valid because the IS NULL test in conjunction with the LEFT JOIN returns exactly one 

unique row per contact.

See also Expression, IN Clause, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE, NULL, and 
Quantifi ed), Search-Condition, and WHERE Clause in this article.

A
rticle 2

A78 Article 2 Understanding SQL

ZR2623252.indd   78 2/23/2007   9:45:48 PM


