
Microsoft® Office Access™
2007 Inside Out

John Viescas and Jeff Conrad

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/9784.aspx

9780735623255
Publication Date: April 2007

ARTICLE 1

Designing Your Database Application

Y

Application Design Fundamentals

Application Design Fundamentals A3

An Application Design Strategy . A7

Data Analysis . A13

Database Design Concepts. A16

When to Break the Rules . A28

 A3

ZR1623252.indd 3 2/8/2007 10:19:19 PM

Step 1: Identifying Tasks

Step 2: Charting Task Flow

When you’re designing an application for someone else, these fi rst two steps are

absolutely the most important. Learning the work process of the business is critical

to building an application that works correctly for the user. These fi rst two steps help

you understand how the business is run. Remember, your application is trying to make

life easier for the users by automating some critical process that they’re doing some

other way.

If you do a lot of work for small businesses or small departments within larger businesses,

walking the user through this process often helps them understand their own business,

and often leads to new effi ciencies even before you start to write a line of code!

SIDE OUT Understanding the Work Process

When you’re designing an application for someone else, these fi rst two steps are

absolutely the most important. Learning the work process of the business is critical

to building an application that works correctly for the user. These fi rst two steps help

you understand how the business is run. Remember, your application is trying to make

life easier for the users by automating some critical process that they’re doing some

other way.

If you do a lot of work for small businesses or small departments within larger businesses,

walking the user through this process often helps them understand their own business,

and often leads to new effi ciencies even before you start to write a line of code!

A
rticle 1

A4 Article 1 Designing Your Database Application

ZR1623252.indd 4 2/8/2007 10:19:20 PM

Step 3: Identifying Data Elements

Step 4: Organizing the Data

See “Database Design Concepts” on page A16 for a simple method of creating a normalized
design.

Step 5: Designing a Prototype and a User Interface

Step 6: Constructing the Application

Application Design Fundamentals A5

A
rt

ic
le

 1

ZR1623252.indd 5 2/8/2007 10:19:21 PM

Step 7: Testing, Reviewing, and Refi ning

If at all possible, you should provide completed portions of your application to users

so that they can test your code and provide feedback about the fl ow of the applica-

tion. Despite your best efforts to identify tasks and lay out a smooth task fl ow, users will

invariably think of new and better ways to approach a particular task after they’ve seen

your application in action. Also, users often discover that some features they asked you

to include are not so useful after all. Discovering a required change early in the imple-

mentation stage can save you a lot of time reworking things later.

Typical Application Development Steps

Step 1: Identifying tasks

Step 2: Charting task fl ow

Step 3: Identifying data elements

Step 4: Organizing the data

Step 5: Designing a prototype and a user interface

Step 6: Constructing the application

Step 7: Testing, reviewing, and refi ning

SIDE OUT Get Feedback from Your Users

If at all possible, you should provide completed portions of your application to users

so that they can test your code and provide feedback about the fl ow of the applica-

tion. Despite your best efforts to identify tasks and lay out a smooth task fl ow, users will

invariably think of new and better ways to approach a particular task after they’ve seen

your application in action. Also, users often discover that some features they asked you

to include are not so useful after all. Discovering a required change early in the imple-

mentation stage can save you a lot of time reworking things later.

Typical Application Development Steps

Step 1: Identifying tasks

Step 2: Charting task fl ow

Step 3: Identifying data elements

Step 4: Organizing the data

Step 5: Designing a prototype and a user interface

Step 6: Constructing the application

Step 7: Testing, reviewing, and refi ning

A
rticle 1

A6 Article 1 Designing Your Database Application

ZR1623252.indd 6 2/8/2007 10:19:22 PM

An Application Design Strategy

Note
The examples in the rest of this article are based on the Conrad Systems Contacts sample

database application on the companion CD. In the chapters in this book, you can learn

how to build various parts of the application as you explore the architecture and features

of Offi ce Access 2007. Conrad Systems Contacts is not only a contacts management

application (Companies, People, Events, and Reminders) but also an order-entry applica-

tion (Products, Sales, and Invoices). As such, it is considerably more complex than the

Northwind Traders application that is included with Access 2007. It also employs many

techniques not found in the product documentation.

Analyzing the Tasks

Note
The examples in the rest of this article are based on the Conrad Systems Contacts sample

database application on the companion CD. In the chapters in this book, you can learn

how to build various parts of the application as you explore the architecture and features

of Offi ce Access 2007. Conrad Systems Contacts is not only a contacts management

application (Companies, People, Events, and Reminders) but also an order-entry applica-

tion (Products, Sales, and Invoices). As such, it is considerably more complex than the

Northwind Traders application that is included with Access 2007. It also employs many

techniques not found in the product documentation.

An Application Design Strategy A7

A
rt

ic
le

 1

ZR1623252.indd 7 2/8/2007 10:19:23 PM

Oh No! Not Another Order-Entry Example!

You might have noticed that when you study database design—whether in a seminar, by

reading a book, or by examining sample databases—nearly all the examples (including

the one presented here) seem to be order-entry applications. There are several good

reasons why you encounter this sort of example over and over again.

A large percentage of business-oriented database applications use the common

order-entry model. If you build a database, it’s likely to use this model.

Using the order-entry model makes it easy to demonstrate good database design

techniques.

At the core of the model, you’ll fi nd a many-to-many relationship example. (An

order might be for many products, and any one product can appear in many

orders.) Many-to-many relationships are common to most database applications

yet often trip up even the most seasoned computer user.

You might argue, “Wait a minute, I’m building a hospital patient tracking system, not an

order-entry system!” Or perhaps you’re creating a database to reserve rooms in corpo-

rate housing for employees visiting from out of town. (The Housing Reservations sample

database that is included with this book does this.) Aren’t you “selling” hospital beds to

patients? Isn’t reserving a room for an employee “selling” that room? If you look at your

business applications from this viewpoint, you’ll be able to compare your project to the

order-entry example with ease. Even if you’re writing a personal application to keep track

of your wine collection, you’re “selling” a rack position in your cellar to your latest bottle

purchase, and you’re probably also tracking the “supplier” of your purchases.

The concept of data subjects related to each other in a many-to-many fashion is impor-

tant in all but the simplest of database applications. This type of data relationship can be

found in nearly all business or personal database applications. For example, a particular

patient might need many different medications, and any one medication is administered

to many patients. A movie in your home collection has many starring actors, and any one

actor appears in many movies. As you’ll discover, a well-designed order-entry database

contains several many-to-many relationships.

Oh No! Not Another Order-Entry Example!

You might have noticed that when you study database design—whether in a seminar, by

reading a book, or by examining sample databases—nearly all the examples (including

the one presented here) seem to be order-entry applications. There are several good

reasons why you encounter this sort of example over and over again.

A large percentage of business-oriented database applications use the common

order-entry model. If you build a database, it’s likely to use this model.

Using the order-entry model makes it easy to demonstrate good database design

techniques.

At the core of the model, you’ll fi nd a many-to-many relationship example. (Any
order might be for many products, and any one product can appear in many

orders.) Many-to-many relationships are common to most database applications

yet often trip up even the most seasoned computer user.

You might argue, “Wait a minute, I’m building a hospital patient tracking system, not an

order-entry system!” Or perhaps you’re creating a database to reserve rooms in corpo-

rate housing for employees visiting from out of town. (The Housing Reservations sample

database that is included with this book does this.) Aren’t you “selling” hospital beds to

patients? Isn’t reserving a room for an employee “selling” that room? If you look at your

business applications from this viewpoint, you’ll be able to compare your project to the

order-entry example with ease. Even if you’re writing a personal application to keep track

of your wine collection, you’re “selling” a rack position in your cellar to your latest bottle

purchase, and you’re probably also tracking the “supplier” of your purchases.

The concept of data subjects related to each other in a many-to-many fashion is impor-y
tant in all but the simplest of database applications. This type of data relationship can be

found in nearly all business or personal database applications. For example, a particular

patient might need many different medications, and any one medication is administered

to many patients. A movie in your home collection has many starring actors, and any one

actor appears in many movies. As you’ll discover, a well-designed order-entry database

contains several many-to-many relationships.

A
rticle 1

A8 Article 1 Designing Your Database Application

ZR1623252.indd 8 2/8/2007 10:19:24 PM

Task Name:

Brief Description:

Related Tasks:

Data Name Usage Description Subject

APPLICATION DESIGN WORKSHEET #1 = TASKS

Figure A1-1 You can use an application design worksheet to help you describe tasks.

An Application Design Strategy A9

A
rt

ic
le

 1

ZR1623252.indd 9 2/8/2007 10:19:24 PM

Note
You can fi nd the Application Design Worksheet #1 in the Documents subfolder of the

fi les you install from the companion CD, in the ArticleA1-01.doc fi le. Worksheet #2 is in

the ArticleA1-02.doc fi le.

Note
Some of the terminology we are using here might be a bit confusing. A “contact” might

be either a person (the person contacted) or an event (the telephone call or letter or

what have you). Throughout this book, we use contact to refer to the person and contact
event to refer to the action.

Data or Information?

You need to understand the difference between data and information before you start

building your data design. This bit of knowledge makes it easier for you to determine

what you need to store in your database.

Data is the set of static values you store in the tables of the database, while information is

data that is retrieved and organized in a way that is meaningful to the person viewing it.

You store data and you retrieve information. The distinction is important because of the

way that you construct a database application. You fi rst determine the tasks that are nec-

essary (what information you need to be able to retrieve), and then you determine what

must be stored in the database to support those tasks (what data you need in order to

construct and supply that information).

Whenever you refer to or work with the structure of your database or the items stored

in the tables, queries, macros, or code, you’re dealing with data. Likewise, whenever you

refer to or work with query records, fi lters, forms, or reports, you’re dealing with infor-

mation. The process of designing a database and its application becomes clearer once

you understand this distinction. Unfortunately, these two terms are ones that folks in

the computer industry have used interchangeably. But armed with this new knowledge,

you’re ready to tackle data design.

Note
You can fi nd the Application Design Worksheet #1 in the Documents subfolder of the

fi les you install from the companion CD, in the ArticleA1-01.doc fi le. Worksheet #2 is in

the ArticleA1-02.doc fi le.

Note
Some of the terminology we are using here might be a bit confusing. A “contact” might

be either a person (the person contacted) or an event (the telephone call or letter or

what have you). Throughout this book, we use contact to refer to the person and t contact
event to refer to the action.t

Data or Information?

You need to understand the difference between data and information before you start

building your data design. This bit of knowledge makes it easier for you to determine

what you need to store in your database.

Data is the set of static values you store in the tables of the database, while information is

data that is retrieved and organized in a way that is meaningful to the person viewing it.

You store data and you retrieve information. The distinction is important because of the

way that you construct a database application. You fi rst determine the tasks that are nec-

essary (what information you need to be able to retrieve), and then you determine what

must be stored in the database to support those tasks (what data you need in order to

construct and supply that information).

Whenever you refer to or work with the structure of your database or the items stored

in the tables, queries, macros, or code, you’re dealing with data. Likewise, whenever you

refer to or work with query records, fi lters, forms, or reports, you’re dealing with infor-

mation. The process of designing a database and its application becomes clearer once

you understand this distinction. Unfortunately, these two terms are ones that folks in

the computer industry have used interchangeably. But armed with this new knowledge,

you’re ready to tackle data design.

A
rticle 1

A10 Article 1 Designing Your Database Application

ZR1623252.indd 10 2/8/2007 10:19:26 PM

Selecting the Data

Organizing Tasks

An Application Design Strategy A11

A
rt

ic
le

 1

ZR1623252.indd 11 2/8/2007 10:19:26 PM

Task Name: Enter a contact event

Brief Description: Search for contact person

Add event to person

Related Tasks: Company add / edit, Contact person add / edit

Contact event type add / edit, Contact product add / edit*

Product add / edit

Data Name Usage Description Subject

ContactID I, O ID of the contact for the event Contacts

ContactDateTime O Date and time of the contact event ContactEvents

ContactEventTypeID I, O ID of the type of contact event ContactEventTypes

ContactEventTypeDesc I Description of the contact type ContactEventTypes

ContactEventRequires-
FollowUp

I Follow-up flag ContactEventTypes

ContactEventFollowUp-
Days

I Default number of days in future for
follow-up

ContactEventTypes

ContactEventProduct-
Sold

I Flag indicating a product sale event ContactEventTypes

ContactEventProductID I Unique ID of the product sold Products

ContactNotes O Notes about the contact event ContactEvents

ContactFollowUp O Flag indicating follow-up required ContactEvents

ContactFollowUpDate O Date the follow-up should occur ContactEvents

*Additional items if
ContactEventProduct-
Sold is true.

CompanyID I, O ID of the default company for this
contact person

Companies

ProductID I, O ID of the product sold Products

DateSold O Date the product was sold ContactProducts

SoldPrice O Price charged for the product ContactProducts

APPLICATION DESIGN WORKSHEET #1 = TASKS

Figure A1-2 A completed worksheet for the Enter a Contact Event task might look like this.

A
rticle 1

A12 Article 1 Designing Your Database Application

ZR1623252.indd 12 2/8/2007 10:19:26 PM

Enter Company
Data

Enter Contact
Data

Link Companies
and Contacts

Enter Contact
Events

Sell a Product
to a Contact

Search for
Companies

Search for
Contacts

Define Contact
Event Types

Enter Product
Data

Create / Edit
Invoices

Search for
Invoices

Print an
Invoice

A

A

Figure A1-3 This diagram shows the relationships among tasks in the Conrad Systems Contacts
database.

Data Analysis

Choosing the Database Subjects

Data Analysis A13

A
rt

ic
le

 1

ZR1623252.indd 13 2/8/2007 10:19:26 PM

Subject Name:

Brief Description:

Related Subjects: Name Relationship

Data Name Data Type Description Validation Rule

APPLICATION DESIGN WORKSHEET #2 = SUBJECTS

Figure A1-4 This application design worksheet will help to identify related subjects.

A
rticle 1

A14 Article 1 Designing Your Database Application

ZR1623252.indd 14 2/8/2007 10:19:26 PM

Subject Name: Companies

Brief Description: Information about companies / organizations to which contact persons
are related.

Related Subjects: Name

CompanyContacts

Invoices

Contacts

Relationship

Many

Many

One (contact referring this Company)

Data Name Data Type Description Validation Rule

CompanyID Autonumber Company identifier Required (P Key)

CompanyName Text (50) Name of the company or
organization

Is Not Null

Department Text (50) Optional department
name

Address Text (255) Street address

City Text (50) City

County Text (50) County

StateOrProvince Text (20) State or province

PostalCode Text (20) Postal code 00000\-9999

Country Text (50) Country

PhoneNumber Text (30) Phone !\(999") "000\-0000

FaxNumber Text (30)

Hyperlink

Phone !\(999") "000\-0000

WebSite Website address

ReferredBy Number, Long Contact who referred
this company /
organization.

RI rule – child of
Contacts

APPLICATION DESIGN WORKSHEET #2 = SUBJECTS

Figure A1-5 Here is a completed worksheet for the Companies subject.

Data Analysis A15

A
rt

ic
le

 1

ZR1623252.indd 15 2/8/2007 10:19:26 PM

Mapping Subjects to Your Database

Database Design Concepts

If you have fi lled out the subject worksheets for your application before you start this

process, it’s a good idea to go back and make any necessary corrections to those work-

sheets as you follow the rules in this section to refi ne your table structure. At the end of

the process, each subject worksheet should map to exactly one table.

SIDE OUT Review Your Work

If you have fi lled out the subject worksheets for your application before you start this

process, it’s a good idea to go back and make any necessary corrections to those work-

sheets as you follow the rules in this section to refi ne your table structure. At the end of

the process, each subject worksheet should map to exactly one table.

A
rticle 1

A16 Article 1 Designing Your Database Application

ZR1623252.indd 16 2/8/2007 10:19:27 PM

Waste Is the Problem

Figure A1-6 The Companies table in Datasheet view is an example of how data is organized in
a table.

Note
The example companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted herein are fi ctitious. No association with any

real company, organization, product, domain name, e-mail address, logo, person, place,

or event is intended or should be inferred.

Note
The example companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted herein are fi ctitious. No association with any

real company, organization, product, domain name, e-mail address, logo, person, place,

or event is intended or should be inferred.

Database Design Concepts A17

A
rt

ic
le

 1

ZR1623252.indd 17 2/8/2007 10:19:28 PM

Contact
Date

Company
Name

Company Address,
City, State, Zip

Company
Phone

Company
Website

Contact
Name

Contact
Address,City,
State, Zip

Contact
Phone

Contact Events

Contact
Event
Time1

Contact
Event
Notes1

Follow-
Up Date1

Product
Category1

Product
Name1

Product
Price1

Contact
Event
Time2

Contact
Event
Notes2

Follow-
Up Date2

Product
Category2

Product
Name2

Product
Price2 . . .

Contact
Event
TimeN

Contact
Event
NotesN

Follow-
Up DateN

Product
CategoryN

Product
NameN

Product
PriceN

Invoice
Number

Invoice
Date

Invoice
Total

Figure A1-7 This design for the Contacts database uses a single Contact Events table.

A
rticle 1

A18 Article 1 Designing Your Database Application

ZR1623252.indd 18 2/8/2007 10:19:28 PM

Normalization Is the Solution

Field Uniqueness

Rule 1: Each field in a table should represent a unique type of information.

Contacts

Company
Name

Company
Phone

Company
Website

Company
Address

Company
City

Company
State

Company
Postal Code

Contact
Name

Contact
Phone

Contact
Address

Contact
City

Contact
State

Contact
Postal Code

Contact
Email

Contact Events

Contact
Event
Time

Contact
Event
Notes

Follow-
Up
Date

Product
Category

Product
Name

Product
Price

Company
Name

Contact
Name

Contact
Date

Invoice
Number

Invoices

Invoice
Number

Invoice
Date

Invoice
Total

Company
Name

Figure A1-8 This design for the Contacts database eliminates redundant fields.

Database Design Concepts A19

A
rt

ic
le

 1

ZR1623252.indd 19 2/8/2007 10:19:28 PM

Primary Keys

Rule 2: Each table must have a unique identifier, or primary key, that is made up
of one or more fields in the table.

A
rticle 1

A20 Article 1 Designing Your Database Application

ZR1623252.indd 20 2/8/2007 10:19:28 PM

Contacts

Company
Name

Contact
ID

Primary Key

Company
Phone

Company
Website

Company
Address

Company
City

Company
State

Company
Postal Code

Contact
Name

Contact
Phone

Contact
Address

Contact
City

Contact
State

Contact
Postal Code

Contact
Email

Invoices

Invoice
Number

Invoice
Date

Invoice
Total

Company
Name

Primary Key

Contact Events

Contact
Event
Time

Contact
Event
Notes

Follow-
Up Date

Product
Category

Product
Name

Product
Price

Contact
ID

Contact
Date

Invoice
Number

Primary Key

Figure A1-9 The Conrad Systems Contacts database tables now have primary keys defined.

Functional Dependence

Database Design Concepts A21

A
rt

ic
le

 1

ZR1623252.indd 21 2/8/2007 10:19:28 PM

Rule 3: For each unique primary key value, the values in the data columns must
be relevant to, and must completely describe, the subject of the table.

A
rticle 1

A22 Article 1 Designing Your Database Application

ZR1623252.indd 22 2/8/2007 10:19:28 PM

Companies

Contact Products

Company
ID

Contact
ID

Product
Name

Product
Category

Date
Sold

Product
Price

Invoice
Number

Invoices

Company
ID

Invoice
Number

PO
Number

Invoice
Date

Invoice
Due

Invoice
Paid

Invoice
Total

Contact Events

Contact
ID

Contact
Date

Contact
Event
Time

Follow-
Up Date

Contact
Event
Notes

Contacts

Contact
ID

Contact
Last
Name

Contact
First
Name

Contact
Address

Contact
City

Contact
State

Contact
Postal Code

Contact
Phone

Contact
Email

Company Contacts

Company
ID

Contact
ID

Position Primary for
Contact

Company
Name

Company
ID

Company
Phone

Company
Website

Company
Address

Company
City

Company
State

Company
Postal Code

Figure A1-10 Creating additional subject tables in the Conrad Systems Contacts database ensures
that all fields in a table are functionally dependent on the primary key of the table.

Database Design Concepts A23

A
rt

ic
le

 1

ZR1623252.indd 23 2/8/2007 10:19:29 PM

Field Independence

Rule 4: You must be able to make a change to the data in any field (other than to a
field in the primary key) without affecting the data in any other field.

A
rticle 1

A24 Article 1 Designing Your Database Application

ZR1623252.indd 24 2/8/2007 10:19:29 PM

Companies

Contact Products

Company
ID

Contact
ID

Product
ID

Date
Sold

Product
Sold
Price

Invoice
Number

Products

Product
ID

Product
Category

Product
Name

Product
Price

Invoices

Company
ID

Invoice
Number

PO
Number

Invoice
Date

Invoice
Due

Invoice
Paid

Contact Events

Contact
ID

Contact
Date

Contact
Event
Time

Follow-
Up Date

Contact
Event
Notes

Contacts

Contact
ID

Contact
Last
Name

Contact
First
Name

Contact
Address

Contact
City

Contact
State

Contact
Postal Code

Contact
Phone

Contact
Email

Company Contacts

Company
ID

Contact
ID

Position Primary for
Contact

Company
Name

Company
ID

Company
Phone

Company
Website

Company
Address

Company
City

Company
State

Company
Postal Code

Figure A1-11 This design for the Conrad Systems Contacts database follows all the design rules.

Database Design Concepts A25

A
rt

ic
le

 1

ZR1623252.indd 25 2/8/2007 10:19:29 PM

Figure A1-12 The tables in the Conrad Systems Contacts sample database are shown in the
Relationships window.

A
rticle 1

A26 Article 1 Designing Your Database Application

ZR1623252.indd 26 2/8/2007 10:19:29 PM

The Four Rules of Good Table Design

Rule 1: Each fi eld in a table should represent a unique type of information.

Rule 2: Each table must have a unique identifi er, or primary key, that is made up of one or

more fi elds in the table.

Rule 3: For each unique primary key value, the values in the data columns must be rel-

evant to, and must completely describe, the subject of the table.

Rule 4: You must be able to make a change to the data in any fi eld (other than to a fi eld

in the primary key) without affecting the data in any other fi eld.

Effi cient Relationships Are the Result

Foreign Keys

For details about referential integrity and defi ning indexes, see Chapter 4.

The Four Rules of Good Table Design

Rule 1: Each fi eld in a table should represent a unique type of information.

Rule 2: Each table must have a unique identifi er, or primary key, that is made up of one or

more fi elds in the table.

Rule 3: For each unique primary key value, the values in the data columns must be rel-

evant to, and must completely describe, the subject of the table.

Rule 4: You must be able to make a change to the data in any fi eld (other than to a fi eld

in the primary key) without affecting the data in any other fi eld.

Database Design Concepts A27

A
rt

ic
le

 1

ZR1623252.indd 27 2/8/2007 10:19:30 PM

One-to-Many and One-to-One Relationships

Creating Table Links

When to Break the Rules
A

rticle 1

A28 Article 1 Designing Your Database Application

ZR1623252.indd 28 2/8/2007 10:19:30 PM

Improving Performance of Critical Tasks

Capturing Point-in-Time Data

When to Break the Rules A29

A
rt

ic
le

 1

ZR1623252.indd 29 2/8/2007 10:19:30 PM

Note
You can fi nd the Housing Reservations sample application on the companion CD.

Figure A1-13 The design for the Housing Reservations database includes duplicate point-in-time
pricing information in the Reservations table.

Note
You can fi nd the Housing Reservations sample application on the companion CD.

A
rticle 1

A30 Article 1 Designing Your Database Application

ZR1623252.indd 30 2/8/2007 10:19:31 PM

Creating Report Snapshot Data

When to Break the Rules A31

A
rt

ic
le

 1

ZR1623252.indd 31 2/8/2007 10:19:31 PM

ZR1623252.indd 32 2/8/2007 10:19:31 PM

