Using the COM server examples

The COM server examples referenced in chapters 11-14 contain three folders:

ProjectX – Contains classes that illustrates a simple business object architecture

ProjectZ – Contains classes that demonstrate VFP 7.0’s new ability to implement interfaces.

Common – Contains files common to both projects

Understanding the business object architecture

The example code illustrates a very simple business object architecture that allows you to understand the basic mechanics of how business objects work. For real-world applications, this structure needs to be enhanced to provide more robust capabilities.

KBizness.prg (located in Common\Libs) contains KBizObj; the class on which all other business objects are based (see Figure 1). The ABizObj class (located in ProjectX\Libs\ABizness.prg) is an application-specific subclass of KBizObj on which all other business objects are based. This intermediate class allows you to make changes to all application business objects without changing the common KBizObj class.

[image: image1.png]
Figure 1. This UML class diagram shows the hierarchy of the classes in the example code.

Manipulating data with business objects

There are a number of ways in which Visual FoxPro can access data. For example, when working with VFP data, Visual FoxPro can access data in the tables directly or use local views. When accessing non-VFP data such as SQL Server or Oracle, business objects can use remote views, SQL passthrough or ADO/ADO.NET (you can also manipulate VFP tables using these methods if you treat the VFP tables as remote data).

Given the wide variety of ways data can be accessed, rather than putting the data access logic directly in the business object, it’s better to create a family of data access classes that can be swapped in and out and used by the business objects to manipulate data. The example code contains such a family of objects (see Figure 2) defined in the KDataSrvc.prg located in the Common\Libs directory. The KDataServiceAbstract class is an abstract class. An abstract class is a class that is not intended to be instantiated directly. It only exists to define the interface for a family of classes. As shown in Figure 2, KDataServiceAbstract possesses methods such as Delete(), GetDataX(), New(), Save() as well as the properties cDataAlias and cDataSource. These properties and methods are inherited by the KDataServiceView, KDataServiceSQLPassthrough and KDataServiceADO classes. These are referred to as concrete classes because they represent concrete or tangible ways to access data. 

[image: image2.png]
Figure 2. The family of data access classes provide flexible data access for business objects.

In the example code, the only concrete data access class that has been implemented is KDataServiceView. The KDataServiceSQLPassthrough and KDataServiceADO classes are simply placeholders that have not been implemented and therefore cannot be used.

Just-in-time data

When you instantiate any of the example business objects, they do not automatically load any data—they only load the structure of the data. This is because the views associated with the business objects are opened with the NODATA clause, which loads the structure of the view but does not run the view’s SELECT command. This gives you finer control over when data is returned from the back end. For example, if you have a form that contains a page frame with a grid on page 3, you don’t need to load the grid with data unless the user clicks on page 3. 

This “just-in-time” data approach allows your forms to load more quickly. When the user clicks on the page, you can send a message to the business object to load the desired data. However, in this scenario, you still need the business object to load the structure of the view so you can bind the grid to the cursor loaded by the business object at design time.
Dynamic data formats

The example business objects intelligently change the format in which they serve up data based on how they are instantiated. If you instantiate your business objects “organically” as VFP classes they default to serving up VFP cursors. If you instantiate them as COM objects, they default to serving up XML.

Compiling the example COM servers

Compile ProjectX first as follows:

· CD to the ProjectX directory and open the ProjectX project

Click the Build button. In the Build Options dialog select Multi-threaded COM server (dll) and click the OK button

In the Save As dialog select to store ProjectX.dll in the ProjectX folder. 

Compile ProjectZ as follows:

· CD to the ProjectZ directory and open the ProjectZ project

Click the Build button. In the Build Options dialog select Multi-threaded COM server (dll) and click the OK button

In the Save As dialog select to store ProjectZ.dll in the ProjectZ folder.

Testing the ProjectX example COM server

Before running the following tests, make sure the ProjectX project is closed. If EXCLUSIVE is set ON, the Project Manager can hold an exclusive lock on the example database container.

Testing business objects outside the COM server

CD to the ProjectX directory, and then enter the following in the VFP Command Window:

DO SETX

Setx.prg issues a SET CLASSLIB and SET PROCEDURE for all libraries and procedure files stored in the ProjectX project. It also sets the path to all example directories.

To instantiate the Customer business object, enter the following in the Command Window:

oCust = CREATEOBJECT("Customer")

If you enter “SET” in the Command Window, you will see that the Customer business object has loaded its associated “v_Customer” view, which in turn loads the Customer table. If you BROWSE the view, you will see that it does not contain any records. 

To get the Customer business object to load data, enter the following in the Command Window:

oCust.GetCustomerByAcctNo("001000")

If you BROWSE the v_Customer view, you will see that it now contains the requested customer record.

Testing business objects from the COM server

To instantiate the Customer business object from the ProjectX COM server, enter the following in the Command Window:

oCust = CREATEOBJECT("ProjectX.Customer")

To get the Customer business object to load data, enter the following in the Command Window:

?oCust.GetCustomerByAcctNo("001000")

After running this command you should see the following XML displayed on the desktop:

<?xml version = "1.0" encoding="Windows-1252" standalone="yes"?>

<VFPData>


<v_customer>



<iid>1</iid>



<cname>Journey Communications</cname>



<cacctno>001000</cacctno>



<caddress1>101 Main St.</caddress1>



<ccity>Richmond</ccity>



<cstate>VA</cstate>



<czip>22901</czip>


</v_customer>

</VFPData>

