
C# for Java Developers

At first glance, Java developers might not get particularly excited about C# code, because of the
syntactical similarity between it and Java. However, look more closely and you will see subtle yet
significant differences: features such as operator overloading, indexers, delegates, properties, and type
safe enumerations in C#.

The focus of this appendix will be on applying much-loved Java programming tricks to C# code,
highlighting features that C# adds to the picture, and pointing out tricks that C# cannot do (although
you won't find many of those). You should note that because I am assuming the reader is a professional
Java developer I am not going to go into too much detail when describing the Java language.

Starting Out
Let's take a look at the infamous "Hello World!" example in Java:

public class Hello {
 public static void main(String args []) {
 System.out.println("Hello world! This is Java Code!");
 }
}

The corresponding C# code for this is as follows:

using System;
public class Hello
{
 public static void Main(string [] args)
 {
 System.Console.WriteLine("Hello world! This is C# code!");
 }
}

The first thing that you'll notice is that the two appear to be very similar – syntactically, the differences
are small, and both languages are case-sensitive. C# is object-oriented like Java, and all functionality
must be placed inside a class (declared by the keyword class). These classes can contain methods,
constructors, and fields just as Java classes can, and a C# class can inherit methods and fields from
another class or interface as in Java. The implementation of classes and methods is similar in both
languages.

C# code blocks are enclosed by braces just as in Java. The entry point to a C# application is the static
Main() method, as required by the compiler (similar to Java but note the uppercase "M"). Also note
that only one class in the application can have a Main() method. Similar to Java, the static keyword

Appendix B

1170

allows for the method to be called without creating an instance of the class first. For the Main() method
in C# you have the choice of either a void or int return type. void specifies that the method does not
return a value and int specifies that it returns an integer type.

The using keyword in C# corresponds to the import keyword in Java. Therefore, in the C# code
above, we are essentially importing the C# equivalent of a class package called System. In C#, a class
package is called a namespace, and we will look more closely at these in the next section.

Note that although we have written it with a lowercase "s" here, in C# the string type can also be
written with a capital "S" as String. You will also notice that the array rank specifier, [], has been
shifted from in front of the args variable in the Java example, to between the string type and args
variable in the C# sample. In fact, this specifier can occur before or after the variable in Java. However,
in C#, the array rank specifier must appear before the variable name because an array is actually a type
of its own indicated by type []. We'll discuss arrays in more depth a bit later.

Finally, as you might expect, the names of methods tend to differ between the languages. For example,
in Java we would use System.out.println() to display text in the command console. The
equivalent to this method in C# is System.Console.WriteLine().

Compiling and Running C# Code
In Chapter 1 of Professional C#, 2nd Edition, we noted that like Java code, C# sourcecode is compiled in
two stages: first to Intermediate Language (IL), and then to native code. To run the C# code above, you
need to save it with an appropriate filename (HelloWorld say) and file extension .cs, and then
compile it to IL using the csc command:

csc HelloWorld.cs

The next step is to compile the IL to native code and run the example. To do this, just type the name of
the file, not including the extension (as we would with Java code):

HelloWorld
Hello world! This is C# code!

Namespaces
We noted above that, while Java classes reside in logical divisions referred to as packages, C# (and
other managed) classes are grouped together into namespaces.

Packages and namespaces differ significantly in their implementation. A Java class that you want to
make part of the com.samples package, for example, must have package com.samples; as the first
line of code in the file. This is, of course, excluding any comments. Any code within that file
automatically becomes a part of the specified package. Also, a Java package name is associated with the
folder containing the class file in that they must have the same name. The com.samples package must
therefore be in class files that exist in the com/samples folder. Let's take a look at some examples of
how packages work in Java:

package java2csharp.javasamples;
public class Hello {
 public static void main(String args []) {
 System.out.println("Hello world! This is Java Code!");
 }

C# for Java Developers

1171

}

Examples of how the above code could be referenced or executed are given below. This assumes that
the class file has been made available to the JRE:

❑ From the command line:

java java2csharp.javasamples.Hello

❑ As a direct reference in the code:

public class Referencer {
 java2csharp.javasamples.Hello myHello = new java2csharp.samples.Hello();

❑ By utilizing the import directive one could omit fully qualified package names, so
Referencer could also be written as:

import java2csharp.javasamples.*;
public class Referencer {
 Hello myHello = new Hello();
}

Wrapping a class in a namespace is achieved in C# by using the namespace keyword with an
identifier, and enveloping the target class in brackets. Here is an example:

namespace java2csharp.csharpsamples
{
 using System;
 public class Hello
 {
 public static void Main(string [] args)
 {
 System.Console.WriteLine("Hello world! This is C# code!");
 }
 }
}

As you can see, we delimit layers of namespaces using the . operator, as in Java. Notice that there is no
"*" needed in C# – applying the using directive implicitly imports all elements of the specified
namespace. You will also have noticed the major difference from Java here: the use of namespace
parentheses in which we place classes associated with the namespace. The advantage of using the
parentheses like this is that we then disassociate package names from directory structures: feasibly we
could place a file containing this namespace anywhere within the directory as long as the CLR
recognizes it. Therefore, it also enables us to call the file containing these classes anything we wish (it
doesn't have to be the same name as the class as in Java); we can have more than one public class
defined per file; and we can split the classes defined in this namespace into different files in different
parts of the directory structure, as long as the namespace declaration appears in each of the files.

Multiple namespaces may also be introduced in the same file with no restriction. We could, for
example, add the definition of a new class and place it in a new namespace in the same file and still not
be outside the bounds of the language:

namespace java2csharp.csharpsamples
{

Appendix B

1172

 using System;
 public class Hello
 {
 public static void Main(string [] args)
 {
 System.Console.WriteLine("Hello world! This is C# code!");
 }
 }
}

namespace java2csharp.morecsharpsamples
{
 using System;
 public class AnotherHello
 {
 public static void Main(string [] args)
 {
 System.Console.WriteLine("Hello again! This is more C# code!");
 }
 }
}

As we pointed out in the previous section, classes from a particular namespace can be imported into
another namespace via the using keyword. We can see that we import classes from the System
namespace (the top level .NET Base Class namespace) into both namespaces above. We can also import
classes from other namespaces directly into our classes by referring to the imported class via its full
name (namespace included), in a similar way to using direct referencing of classes in Java code.

Namespaces may also be defined within other namespaces. This type of flexibility is impossible in Java
without having to create a subdirectory. We could change the example above so that the AnotherHello
class is in the java2csharp.csharpsamples.hellosamples namespace:

namespace java2csharp.csharpsamples
{
 namespace hellosamples
 {
 using System;
 public class AnotherHello
 {
 public static void Main(string [] args)
 {
 System.Console.WriteLine("Hello again! This is more C# code!");
 }
 }
 }
}

Java classes are part of a package whether they like it or not – all classes created without specifying one
imply inclusion in the default package. C# mimics this functionality. Even if you do not declare one, a
default namespace is created for you. It is present in every file, and available for use in named
namespaces. Just as in Java you cannot change package information, in C# namespaces cannot be
modified either. Packages can span multiple files in the same folder; namespaces can span multiple files
in any number of folders, and even multiple assemblies (the name given to code libraries in .NET), see
Chapter 8 of Professional C#, 2nd Edition.

Note that the default accessibility for types inside a namespace is internal. You must explicitly mark

C# for Java Developers

1173

types as public if you want them available without full qualification but I would strongly recommend
against such a strategy. No other access modifiers are allowed. In Java, internal package types may also
be marked as final or abstract or not marked at all (this default access makes them available only to
consumers inside the package). Access modifiers will be discussed later on in this document.

One final feature of namespaces not available to Java packages is that they may be given a using alias.
using aliases make it very easy to qualify an identifier to a namespace or class. The syntax is simple.
Suppose you had a namespace Very.Very.Long.NameSpace.Name. You could define and use a
using alias (here VVLNN) for the namespace as follows:

using VVLNN = Very.Very.Long.Namespace.Name;

Declaring Variables
C# follows a similar scheme of variable declaration to Java, where the declaration consists of a datatype
keyword and then the name of the variable to hold that datatype. For example, to declare an integer
(int) variable called myInt, we would use the following code:

int myInt;

Identifiers are the names we give to classes, objects, class members, and variables. Raw keywords,
discussed in the next section, may not be identifiers either in Java or C#; however, in C# one may use
keywords as variable names by prefixing the name with "@". Note that this exception is only with
keywords and does not allow the breaking of any other rules. Although identifiers may have letters and
numbers, the first letter of the identifier in both C# and Java must not be a number. Here are some
valid and invalid examples of variable declaration:

int 7x; //invalid, number cannot start identifier
int x7; //valid, number may be part of identifier
int x; //valid
int x$; //invalid, no symbols allowed
int @class; //valid, prefix @ allows it to be used as an identifier
int @7k; //invalid, prefix @ only works for keywords

Variable Naming Conventions
Java practices camel notation for methods, properties and variables, meaning that they are lowercase for
the first letter in the name and capital letter for the first letter of every other word in the name. The first
letter of class and object names in Java are uppercase. The general syntax you would find most
programmers following in Java is given below:

int id;
int idName;
int id_name; //practiced also
final int CONSTANT_NAME; //widely adopted
int reallyLongId;

public class ClassName //every first letter capitalized
public interface InterfaceName

public void method(){}

Appendix B

1174

public void myMethodName(){}

Based on the library classes provided by Microsoft for C#, it is safe to make certain assumptions about
C# naming conventions. A documented naming guideline for C# was not provided at the time of this
writing. Each first letter of all method and property identifier names is capitalized, as is each first letter
of all class and namespace names. Interfaces are preceded with an I. Variables are camel-cased. Some
examples are given below:

int id;
int idName;

public class ClassName //every first letter capitalized
public interface IInterfaceName //interface name preceded by I
public void Method(){} // first letter always capitalized
public void MyMethodName(){} // first letter of all other words capitalized

Data Types
Types in Java and C# can be grouped into two main categories: value types and reference types. As you
are probably aware, value type variables store their data on the stack, while reference types store data
on the heap. Let's start by considering value types.

Value Types
There is only one category of value type in Java; all value types are by default the primitive data types
of the language. C# offers a more robust assortment. Value types can be broken down into three main
categories:

❑ Simple types

❑ Enumeration types

❑ Structures

Let's take a look at each of these in turn.

Simple Types
The C# compiler recognizes a number of the usual predefined datatypes (defined in the System Base
Class namespace), including integer, character, boolean, and floating point types. Of course, the value
ranges of the indicated types may be different from one language to another. Below we discuss the C#
types and their Java counterparts.

Integer Values

There are eight predefined signed and unsigned integer types in C# (as opposed to just four signed
integer types in Java):

C# Type Description Equivalent in Java

sbyte signed 8-bit byte

C# for Java Developers

1175

short signed 16-bit short

int signed 32-bit int

long signed 64-bit long

byte 8-bit unsigned integer n/a

ushort 16-bit unsigned integer n/a

uint 32-bit unsigned integer n/a

ulong 64-bit unsigned integer n/a

When an integer has no suffix the type to which its value can be bound is evaluated in the order int,
uint, long, ulong, decimal. Integer values may be represented as decimal or hexadecimal literals. In
the code below the result is 52 for both values:

int dec = 52;
int hex = 0x34;
Console.WriteLine("decimal {0}, hexadecimal {1}",dec, hex);

Character Values

char represents a single two byte long Unicode character. C# extends the flexibility of character
assignment by allowing assignment via the hexadecimal escape sequence prefixed by \x and Unicode
representation via the \u. You will also find that you will not be able to convert characters to integers
implicitly. All other common Java language escape sequences are fully supported.

Boolean Values

The bool type, as in Java, is used to represent the values true and false directly, or as the result of
an equation as shown below:

bool first_time = true;
bool second_time = (counter < 0);

Decimal Values

C# introduces the decimal type, which is a 128-bit data type that represents values ranging from
approximately 1.0x10-28 to 7.9x1028. They are primarily intended for financial and monetary calculations
where precision is important (for example in foreign exchange calculations). When assigning the
decimal type a value, m must be appended to the literal value. Otherwise, the compiler treats the value
as a double. Because a double cannot be implicitly converted to a decimal, omitting the m requires an
explicit cast:

decimal precise = 1.234m;
decimal precise = (decimal)1.234;

Floating-point Values

C# Type Description Equivalent in Java

float
signed 32-bit floating
point float

Appendix B

1176

double
signed 64-bit floating
point double

Floating-point values can either be doubles or floats. A real numeric literal on the right hand-side of
an assignment operator is treated as a double by default. Because there is no implicit conversion from
float to double you may be taken aback when a compiler error occurs. The example below illustrates
this problem:

float f = 5.6;
Console.WriteLine(f);

This example will produce the compiler error message listed below.

Literal of type double cannot be implicitly converted to type 'float'; use an 'F' suffix to create a
literal of this type

There are two ways to solve this problem. We could cast our literal to float, but the compiler itself
offers a more reasonable alternative. Using the suffix F tells the compiler this is a literal of type float
and not double:

float f = 5.6F;

Although it is not necessary, you can use a D suffix to signify a double type literal.

Enumeration Types
An enumeration is a distinct type consisting of a set of named constants. In Java you can achieve this by
using static final variables. In this sense, the enumerations may actually be part of the class that is using
them. Another alternative is to define the enumeration as an interface. The example below illustrates
this concept:

interface Color {
 static int RED = 0;
 static int GREEN = 1;
 static int BLUE = 2;
}

Of course, the problem with this approach is that it is not type safe. Any integer read in or calculated
can be used as a color. It is possible, however, to programmatically implement a type safe enumeration
in Java by utilizing a variation of the Singleton pattern, which limits the class to a predefined number of
instances. The following Java code illustrates how this can be done:

final class Day { // final so it cannot be sub-classed
 private String internal;
 private Day(String Day) {internal = Day;} // private constructor
 public static final Day MONDAY = new Day("MONDAY");
 public static final Day TUESDAY = new Day("TUESDAY");
 public static final Day WEDNESDAY = new Day("WEDNESDAY");
 public static final Day THURDAY = new Day("THURSDAY");
 public static final Day FRIDAY = new Day("FRIDAY");
}

C# for Java Developers

1177

As you can see from the above example, the enumerated constants are not tied to primitive types, but to
object references. Also, because the class is defined as final, it can't be sub-classed, so no other classes
can be created from it. The constructor is marked as private, so other methods can't use the class to
create new objects. The only objects that will ever be created with this class are the static objects the
class creates for itself the first time the class is referenced.

Although the concept is pretty simple, the workaround involves techniques that may not be immediately
apparent to a novice – after all, we just want a readily available list of constants. C#, in contrast,
provides inbuilt enumeration support, which also ensures type safety. To declare an enumeration in C#
the enum keyword is used. In its simple form an enum could look something like the code below:

public enum Status
{
 Working,
 Complete,
 BeforeBegin
}

In the above case, the first value is 0 and the enum counts upwards from there, Complete being 1 and
so on. If for some reason you are interested in having the enum represent different values you can do so
simply be assigning them as follows:

public enum Status
{
 Working = 131,
 Complete = 129,
 BeforeBegin = 132
}

You also have the choice of using a different numerical integral type by 'inheriting' from long, short,
or byte. int is always the default type. This concept is illustrated below:

public enum Status : int
{
 Working,
 Complete,
 BeforeBegin
}
public enum SmallStatus : byte
{
 Working,
 Complete,
 BeforeBegin
}
public enum BigStatus : long
{
 Working,
 Complete,
 BeforeBegin
}

It may not be immediately apparent but there is a big difference between these three enumerations, tied
directly to the size of the type they inherit from. The C# byte, for example, can contain one byte of
memory. It means the SmallStatus cannot have more than 255 constants or set the value of any of its
constants to more than 255. The following listing displays how we can use the sizeof() operator to

Appendix B

1178

identify the differences between the different versions of Status:

int x = sizeof(Status);
int y = sizeof(SmallStatus);
int z = sizeof(BigStatus);
Console.WriteLine("Regular size:\t{0}\nSmall size:\t{1}\nLarge size:\t{2}",
 x, y, z);

Compiling the listing will produce the results shown below:

Regular size: 4
Small size: 1
Large size: 8

Structures
One of the major differences between a C# structure (identified with the keyword struct) and an
object is that, by default, the struct is passed by value, while an object is passed by reference. There is
no analogue in Java to structures. Structures have constructors and, methods; they can have other
members normally associated with a C# class too: indexers (for more on these members see Chapter 3
of Professional C#, 2nd Edition), properties, operators, and even nested types. Structures can even
implement interfaces. By using structs we can create types that behave in the same way as, and share
similar benefits to, the built-in types. Below is an example of how a structure can be used:

public struct EmployeeInfo
{
public string firstName
public string lastName
public string jobTitle
public string dept
public long employeeID
}

Although we could have created a class to hold the same information, using a struct is a little more
efficient here because it is easier to create and copy it. To copy values from one struct to another, we
only need do this:

EmployeeInfo employee1;
EmployeeInfo employee2;
employee1 = new EmployeeInfo();
employee1.firstName = "Dawn";
employee1.lastName = "Lane";
employee1.jobTitle = "Secretary";
employee1.dept = "Admin";
employee1.employeeID = 203;

employee1 = employee2;

Structures are often used to tidy up function calls too: we can bundle up related data together in a
struct and then pass the struct as a parameter to the method.

However, there are a number of limitations associated with using structures. These are listed below:

❑ A struct cannot inherit from another struct or from classes

C# for Java Developers

1179

❑ A struct cannot act as the base for a class

❑ Although a struct may declare constructors, those constructors must take at least
one argument

❑ The struct members cannot have initializers

Structs and Attributes

Attributes (compiler directives, see Chapter 4 of Professional C#, 2nd Edition) can be used with structures
to add more power and flexibility to them. The StructLayout attribute in the
System.Runtime.InteropServices namespace, for example, can be used to define the layout of
fields in the struct. It is possible to use this feature to create a structure similar in functionality to a
C/C++ union. A union is a data type whose members share the same memory block. It can be used to
store values of different types in the same memory block. In the event that one does not know what type
the values to be received will be, a union is a great way to go. Of course there is no actual conversion
happening; in fact there are no underlying checks on the validity of the data. The same bit pattern is
simply interpreted in a different way. An example of how a union could be created using a struct is
listed below:

[StructLayout(LayoutKind.Explicit)]
public struct Variant
{
 [FieldOffset(0)]public int intVal;
 [FieldOffset(0)]public string strinVal;
 [FieldOffset(0)]public decimal decVal;
 [FieldOffset(0)]public float floatVal;
 [FieldOffset(0)]public char charVal;
}

The FieldOffset attribute applied to the fields is used to set the physical location of the specified
field. Setting the starting point of each field to 0 ensures that any data store in one field will overwrite to
a certain extent whatever data may have been stored there. It follows then that the total size of the fields
will be the size of the largest field, in this case the decimal.

Reference Types
All a reference type variable stores is the reference to data that exists on the heap. Only the memory
addresses of the stored objects are kept in the stack. The object type, arrays, and interfaces are all
reference types. Objects, classes, and the relationship between the two do not differ much between Java
and C#. You will also find that interfaces, and how they are used, are not very different in the two
languages. We will look at classes and class inheritance in C# in more depth later in this document.
Strings can also be used the same way in either C# or Java. C# also introduces a new type of reference
type called a delegate. Delegates represent a type safe version of C++ function pointers (references to
methods), and are discussed in Chapter 4 of Professional C#, 2nd Edition.

Arrays and Collections
Again, array syntax in C# is very similar to that used in Java. However, C# supports "jagged" arrays,
and adds multidimensional arrays (as opposed to the arrays of arrays supported by Java):

int[] x = new int[20]; //same as in Java except [] must be next to type
int[,] y = new int[12,3]; //same as int y[][] = new int[12][3];
int[][] z = new int[5][]; //same as int x[][] = new int[5][];

Appendix B

1180

In C#, arrays are actual types, so they must be written syntactically as such. Unlike in Java, you cannot
place the array rank specifier [] before or after the variable; it must come before the variable and after
the datatype. Since arrays are types, they have their own methods and properties. For example, we can
get the length of array x using:

 int xLength = x.Length;

We can also sort the array using the static Sort() method:

Array.Sort(x);

You should also note that although C# allows us to declare arrays without initializing them, we cannot
leave the determination of the size of an array until runtime. If you need a dynamically-sized array, you
must use an System.Collections.ArrayList object (similar to the Java's Arraylist collection).
We cover C# collection objects in depth in Chapter 5 of Professional C#, 2nd Edition.

Type Conversion and Casting
Type conversion in Java consists of implicit or explicit narrow and wide casting, using the "()" operator
as needed. It is generally possible to perform similar type conversions in C#. C# also introduces a
number of powerful features built into the language. These include boxing and unboxing.

Because value types are nothing more than memory blocks of a certain size, they are great to use for
speed reasons. Sometimes, however, the convenience of objects is good to have for a value type. Boxing
and unboxing provide a mechanism that forms a binding link between value types and reference types
by allowing them to be converted to and from the object type.

Boxing an object means implicitly converting any value type to type Object. An instance of Object is
created and allocated, and the value in the value type is copied to the new object. Below is an example
of how boxing works in C#:

int x = 10;
Object obj = x;

This type of functionality is not available in Java. The code listed above would not compile because
primitives cannot be converted to reference types.

Unboxing is simply the casting of the Object type containing the value back to the appropriate value
type. Again, this functionality is not available in Java. We can modify the code above to illustrate this
concept. You will immediately notice that while boxing is an implicit cast, Unboxing requires an
explicit one:

 int x = 10;
 Object obj = x;
 int y = (int) obj;

Another powerful feature of C# dealing with casting is the ability to define custom conversion operators
for our classes and structs. We deal with this issue in depth in Chapter 4 of Professional C#, 2nd Edition.

C# for Java Developers

1181

Operators
Here is a table of C# operators:

Category Operator

Arithmetic + - * / %

Logical & | ^ ~ && || !

String concatenation +

Increment and decrement ++ --

Bit shifting << >>

Comparison == != < > <= >=

Assignment = += -= *= /= %= &= |= ^= <<= >>=

Member access (for objects and structs) .

Indexing (for arrays and indexers) []

Cast ()

Conditional (the Ternary Operator) ?:

Object Creation new

Type information sizeof (unsafe code only) is typeof
as

Overflow exception control checked unchecked

Indirection and Address * -> & (unsafe code only) []

Java developers will immediately spot that C# operators are very similar to Java's. However, there are a
few significant differences.

To determine whether an object belongs to a given class or any of the parent classes Java uses the
instanceof operator. The C# equivalent of instanceof is the is operator. It returns true if the
runtime type of the given class is compatible with the specified type. Here's an example of its use:

string y = "a string";
object x = y;
if(x is System.String)
{
 System.Console.WriteLine("x is a string");
}

Also, since Java has no value types other than the primitives whose size is always known, there is no
real use for a sizeof operator. In C#, value types range from primitives to structs to enums. As with
Java, the size of the primitives is known. There is a need, however, to know how much space a struct
type or enum type occupies. This is what the sizeof operator is for. The syntax is quite simple:
sizeof(<ValueType>), where <Value Type> is the struct or enum. One thing to note when using
the sizeof operator; sizeof may only be used in an unsafe context. The sizeof operator cannot be

Appendix B

1182

overloaded.

The typeof operator is used to get an instance of a type's System.Type object without having to
create an instance of the type. In Java, every type has a public static class variable that returns a
handle to the Class object associated with that class. The typeof operator provides this type of
functionality. Just as we saw with sizeof, the syntax is very simple. The statement typeof(<Type>)
where <Type> is any user defined type will return you the type object of that type.

Flow Control and Iteration
Most of the flow control statements are conceptually and syntactically very similar to Java's. Here's a
brief summary:

if...else if...else

if(option == 1)
{
 //do something
}
else if(option == 2)
{
 //do something else
}
else
{
 //do this if none of other options are selected
}

switch

switch(option)
{
 case 1:
 //do something
 break;
 case 2:
 //do something else
 break;
 default:
 break;
}

You should note that the C# version of switch (unlike Java's) all but prohibits fall-through. All case
clauses must end with a break, unless the case clause is empty. To jump from one case clause to
another you will usually need to use a goto statement.

for

for (int i = 0; i <10; i++)
{
 // iterates 10 times
}

while

C# for Java Developers

1183

bool condition = false;
while (!condition)
{
 // do something that may alter the value of the condition Boolean
}

do...while

bool condition;
do
{
 // do something that may alter the value of the condition Boolean
 // at least one iteration occurs whatever the initial value of condition
} while (condition);

foreach

C# introduces a foreach statement, used specifically to iterate through, and not change collection or
array entries to get the desired information. Changing the contents may have unpredictable side effects.
The foreach statement usually takes the form supplied below:

foreach (ItemType item in TargetCollection)

ItemType represents the data type stored in the collection or array and TargetCollection
represents the actual array or collection. There are two sets of requirements that a collection you want
to iterate through using the foreach statement must meet. The first set is to do with the composition of
the collection itself. They are as follows:

❑ The collection type must be an interface, class, or struct.

❑ The collection type must include a GetEnumerator() method for returning an enumerator
type. An enumerator type is basically an object that allows you to step
through a collection item by item.

The second set of requirements deal with the composition of the enumerator type returned by the
GetEnumerator() method mentioned above. The list of requirements is given below:

❑ The enumerator should provide a boolean method MoveNext().

❑ MoveNext() should return true if there are more items in the collection.

❑ MoveNext() should step to the next item in the collection at each invocation.

❑ The enumerator type must provide a property named Current that returns an ItemType (or
a type that can be converted to ItemType).

❑ The property accessor Current should return the current element of the collection.

The following snippet of C# code uses foreach to iterate through a Hashtable collection:

Hashtable t = new Hashtable();
t["a"] = "hello";
t["b"] = "world";
t["c"] = "of";
t["d"] = "c-sharp";
foreach(DictionaryEntry b in t)
{
 Console.WriteLine(b.Value);

Appendix B

1184

}

break, continue, and return

We met the break statement in our discussion of switch; this statement can be used to exit from any
flow control or iterative statement. The continue statement forces the end of the current iteration of an
iterative statement, while return is used in a method to return control to the caller of the method. You
will have, again, noted the similarity here to Java.

Classes
Conceptually, classes in both C# and Java are very similar. A class is the template for an object, which
is a data type that can hold both data and functionality that acts upon that data. Instantiating an object
means creating a specific occurrence of that object, based on the class template. C# classes contain
members that include methods (including constructors) and fields, like Java classes. However, there are
some important conceptual differences between C# and Java classes, and a few different keywords too
(as we would expect).

Access Modifiers
As with Java, we can add the usual modifiers to the start of the class or member declaration to modifier
the behavior of the class or member, including:

Access Modifier Java Equivalent Description

public public No restrictions on access. Members of enum and
interface, as well as namespaces, are public by
default

private private Accessible only to the declaring class. Members of
class and struct are private by default.

internal n/a Accessible to files in the same assembly.

protected n/a Accessible to the declaring class, and any subclass of
the declaring class. In C# protected is more
restrictive than in Java. Protected access will not allow
other files in the same assembly to access the member.

protected
internal

protected Accessible to assembly files and subclasses of declaring
class.

The private keyword is used to make methods and variables accessible only from within the
containing class. It serves the same function in both languages. The public modifier allows entities
outside the package/namespace to access the members of the class. However, C# and Java differ in the
way protected and default are handled. While in Java, protected makes the method or variable
accessible to classes in the same package or subclasses of the class, in C# protected makes code only
visible to that class and subclasses that inherit from it.

C# also introduces a new access modifier: internal. The internal keyword modifies data members
so that they are visible to all code within the entire component but not clients of that component. The
difference between no modifier in Java (which signifies an element that is accessible only to elements
within the package) and internal is that internal is accessible to all elements of the assembly,

C# for Java Developers

1185

which can span multiple namespaces.

Class Members
As we have seen throughout this document, the differences in syntax between C# and Java when
declaring and referring to classes and their members is minimal. However, there are marked differences
in class member modifier syntax. Here's a comparison between the two languages:

Member
Modifiers

Java
Equivalent

Description

virtual n/a Allows target members to be overridden by an inherited
class (the default in Java).

static static Target member marked as static belongs to class and not
instance of class. There is therefore no need to instantiate
the class in order to gain access to it

event n/a Used to bind client code to events of the class, the event
modifier allows you to specify a delegate that will be called
when some "event" in your code occurs. Note that it is the
job of the class programmer to define when and where the
event is raised, and the job of the subscriber to choose how
to handle it.

abstract abstract Indicates that the target member is implicitly virtual, and has
no implementation code. The derived class must provide
this implementation and the implemented method must be
marked as override.

const final Indicates that the target member cannot be modified. Java
also has a const keyword, which at the time of this writing
is simply a reserved word.

readonly n/a Indicates that the target member can only be assigned values
in its declaration or in the constructor of its containing class.

extern n/a Indicates that the target member is implemented externally.
This modifier is typically used with the DllImport
attribute.

override n/a Indicates that the target member provides a new
implementation of a member inherited from a base class.

For more information about delegates and events, refer to Chapter 4 of Professional C#, 2nd Edition.

As with Java, defining abstract methods in C# mandates that the class be abstract.

C# does not have a native modifier, and there is also no C# version of transient, volatile, or
synchronized at the time of writing. In Java, using native indicates that the method is implemented
in a platform-dependent language. It requires that the method be abstract since the implementation is to
be found elsewhere. The closest relative to this type of functionality is the extern modifier. Using
extern implies that the code is implemented externally (by some native DLL for example). Unlike
Java, however, there is no need to use the abstract keyword in association with it. Below, the Flower
class displays an example of how extern can be used:

Appendix B

1186

public class Flower
{
 public Flower(){}
 public extern int GetColor();
 // rest of Flower class definition
}

This doesn't make much sense without using the DllImport attribute to specify the external
implementation. The code below makes the appropriate modifications, assuming there was a See()
function exported by the User32.dll resource:

public class Flower
{
 public Flower(){}
 [System.Runtime.InteropServices.DllImport ("User32.dll")]
 public static extern int GetColor();
 // rest of Flower class definition
}

If you haven't already noticed, I have now marked GetColor() as static. The DllImport attribute
requires this of the methods it is used on.

Passing as Reference to Methods
Java and C# differ extensively in syntax and ideology regarding the way methods are handled by an
object. For one thing, in C# not all reference data type parameters are passed as references and not all
simple data types have to be passed by value. You have the option to pass arguments by value as an in
parameter (this is the default way parameters are passed) by reference as a ref parameter, or as an out
parameter. This is illustrated by the following code:

public static void Main(string[] args)
{
 int a = 10;
 Console.WriteLine(a);
 AddOne(a);
 Console.WriteLine(a);
}
public static void AddOne(int a)
{
 a++;
}

This would produce the output below in both C# and Java:

10
10

Because a is passed by value, the value that is passed is not tied to the value a in Main().
Consequently, incrementing a in the Add() method does not affect the a in Main(). This is probably
not the behavior we want; we would like the changes made to a to be remembered after the method
call. We can do this by passing by reference instead of by value, like this:

public static void Main(string[] args)
{

C# for Java Developers

1187

 int a = 10;
 Console.WriteLine(a);
 AddOne(ref a);
 Console.WriteLine(a);
}
public static void AddOne(ref int a)
{
 a++;
}

This will produce:

10
11

So, to use a reference parameter, you precede the parameter type with the ref keyword.

We can also pass values back from a method using the out parameter. You should note that out
parameters do not need to be initialized before they are passed as arguments. The following code will
display 100:

public static void Main(string[] args)
{
 int a;
 Add(out a);
 Console.WriteLine(a);
}
public static void Add(out int a)
{
 a = 100;
}

Properties
Unlike Java, C# does not use get and set methods to access an object's internal attributes. Instead it
combines these methods together into another kind of class member called a property. A property
contains a get accessor, which allows reading of internal fields of an object, and a set accessor that
allows you to change the value of an internal field. The value keyword represents the new value to the
right of the equals sign at assignment time. Not including the appropriate accessor in the property
declaration will make the property either read-only (no set), or write only (no get). The following
class, Person, contains a few properties, called Age and Name:

public class Person
{
 private int age;
 private string name;
 public Person(string name)
 {
 this.name = name;
 }
 public int Age
 {
 get
 {
 return age;

Appendix B

1188

 }
 set
 {
 age = value;
 }
 }
 public string Name
 {
 get
 {
 return name;
 }
 }
}

In the above example, the property Age has a get and set accessor so you may read or write to the
property. Name, however, is created once when you create a new instance of the properties
object, after which you can only read the value of the Name property. Properties are
accessed as if they are public fields:

Person john = new Person("John Smith");
john.Age = 21;
Console.WriteLine("My name is {0}, and I am {1} years old.", john.Name,
 john.Age);

The result of the above code will be:

My name is John Smith, and I am 21 years old.

Note that property names must be unique.

Destructors
C# uses destructors in a similar way to C++. They work similarly to finalizers in Java; their syntax,
however, is very different. With destructors, a tilde (~) prefixes the class name:

~Sample()
{
}

A word of advice concerning code in the destructor: the garbage collector in .NET is not invoked
immediately after a variable goes out of scope. Indeed, there are certain intervals or memory conditions
that bring the thread to life. Since there is a possibility that it may be triggered at low memory
situations, consider making code in the destructor as short and sweet as possible. It is also a good idea to
call close()on resource-intensive objects before destroying the controllers that use them.

Class Inheritance
Class inheritance in C# is also implemented in a very similar way to Java. Both languages are based
upon single implementation inheritance (in other words a subclass is only allowed to inherit from one
other class) and multiple interface inheritance (a class can implement as many interfaces as desired).

C# does not have Java's extends or implements modifiers. To derive from a class or implement an

C# for Java Developers

1189

interface in C#, we use the ":" operator. When a class base list contains a base class and interfaces, the
base class comes first in the list. The interface keyword is used to declare an interface. Examples of
the use of these concepts are given below:

//declare a parent/base class
class MyBaseClass
{
 //class members
}

// declare an interface IFirstInterface
interface IFirstInterface
{
 // interface members
}

// declare a subclass of MyBaseClass that inherits from interfaces too
class MySubClass : MyBaseClass, IFirstInterface, ISecondInterface
{
 // class members
}

Abstract Classes
As with Java, in C# we can use the abstract modifier in a class declaration to indicate that the class
should not (and cannot) be instantiated. Classes derived from abstract classes must implement all the
abstract methods of the class, and the sealed (see below) modifier cannot be applied to these methods.

Preventing Inheritance
In C# the sealed modifier is used to prevent accidental inheritance, because a class defined as sealed
cannot be inherited from. Declaring a class as final achieves the same goal.

Declaring a method as final also seals it, making it impossible to override. Declaring a variable as
final is essentially making it read-only. I say read-only and not constant because it is possible to set a
final value to the value of a variable. The value of constants must be known at compile time so
constants may only be set equal to other constants.

Using Base Class Members and Base Constructors
The keyword this has the same functionality in both Java and C#. In Java the super reference
variable is used to signify the immediate parent class. In C# the equivalent is base. Take a C# class
CalculateFor that provides the ability to work out the value of integer x raised to a particular integer
power (for instance, x raised to the power of three is x multiplied by x multiplied by x), given x and the
power (provided an overflow does not occur):

using System;
public class CalculateFor
{
 internal int x;
 public CalculateFor(int x)
 {
 this.x = x;
 }
 public int ToThePower(int power)
 {

Appendix B

1190

 int total = 1;
 for(int i = 0; i < power; i ++)
 {
 total *= x;
 }
 return total;
 }
}

We could use this class in other code like this, given a value of x of 9 and a value of power of 3:

CalculateFor myNumber = new CalculateFor(9);
int result = myNumber.ToThePower(3);

Let's introduce a subclass of CalculateFor, ExpCalculateFor, which contains a member floating
point variable, and a method ToTheExponent() that multiplies the result of ten to a particular power
by that floating point value:

using System;
public class ExpCalculateFor
{
 internal float y;
 public ExpCalculateFor(float y) : CalculateFor(10)
 {
 this.y = y;
 }
 public int ToTheExponent(int power)
 {
 int total = 1;
 for(int i = 0; i < power; i ++)
 {
 total *= base.x;
 }
 total *= y;
 return total;
 }
}

Notice the syntax used when referring to a base constructor in a subclass' constructor declaration.
Actually we could simplify the ToTheExponent() method to the following, reusing the functionality of
the base class' ToThePower() method:

 public int ToTheExponent(int power)
 {
 float total = (base.x).(base.ToThePower(power));
 total *= y;
 return total;
 }

Method Overriding and Hiding
In C#, method overriding is a very explicit procedure. This is quite different from the Java approach,
where overriding is the default behavior when the signature of a super class member is the same as the
signature of its subclass. In C#, to provide method overriding functionality, the modifiers virtual and
override are used in tandem. All methods in the base class that you expect will be overridden must

C# for Java Developers

1191

utilize the virtual keyword. To actually override them use the override keyword in the child class.
Below is an example class and subclass we can use to illustrate override functionality:

using System;
public class FruitPlant
{
 public FruitPlant(){}
 public virtual void BearFruit()
 {
 Console.WriteLine("Generic fruit plant");
 }
}

class MangoTree : FruitPlant
{
 public MangoTree(){}

 public MangoTree(){}
 public override void BearFruit()
 {
 Console.WriteLine("Tree fruit is:->Mango");
 }
}

public class FruitPlantTest
{
 public FruitPlantTest(){}
 public static void Main(string[] args)
 {
 FruitPlant p = new FruitPlant();
 p.BearFruit();
 MangoTree t = new MangoTree();
 t.BearFruit();
 ((FruitPlant)t).BearFruit();
 }
}

Compiling and running this will produce the output listed below:

Generic fruit plant
Tree fruit is:->Mango
Tree fruit is:->Mango

As you can see the most derived Fruit() method is called, irrespective of our use of final cast of the
MangoTree instance to the Plant instance. Indeed, the benefit of using method overriding is that you
are guaranteed that the most derived method will always be called.

Although we cannot override a method in C# unless the method was originally declared as virtual,
C# also introduces a new concept, method hiding. This allows the programmer to redefine superclass
members in the child class and hide the base class implementation even if the base member is not
declared virtual. C# uses the new modifier to accomplish this.

The benefit of hiding members from the base class rather than overriding them is that you can
selectively determine which implementation to use. By modifying the code above we can see this
concept in action:

Appendix B

1192

 public class FruitPlant
 {
 public FruitPlant(){}
 public void BearFruit()
 {
 Console.WriteLine("Generic fruit plant");
 }
 }

 class MangoTree : FruitPlant
 {
 public MangoTree(){}
 new public void BearFruit()
 {
 Console.WriteLine("Tree fruit is:->Mango");
 }
 }

 // then FruitPlantTest implementation

Running this example will produce the output listed below:

Generic plant fruit
Tree fruit is:->Mango
Generic plant fruit

In other words, unlike overriding, with method hiding the method called depends upon the object the
method is called upon. For the last line of output, we cast the MangoTree instance back to a Plant
instance before calling the BearFruit() method. So it is the Plant class' method that is called.

You should note that the new modifier can also be used to hide any other type of inherited members
from base class members of a similar signature.

Input and Output
Being able to collect input from the command prompt and display output in the command console is an
integral part of Java's input/output functionality. Usually in Java one would have to create an instance of
a java.io.BufferedReader object, using the System.in field in order to retrieve an input from the
command prompt. Below we have a simple Java class, JavaEcho, which takes input from the console
and echoes it back, to illustrate the use of the Java.io package to gather and format input and output:

import java.io.*;
public class JavaEcho {
 public static void main(String[] args)throws IOException {
 BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));
 String userInput = stdin.readLine ();
 System.out.println ("You said: " + userInput);
 }
}

In C#, the System.Console class provides methods that can provide similar functionality for reading
and writing from and to the command prompt. There is no need for any extra objects; the Console

C# for Java Developers

1193

class provides methods that can read whole lines, read character by character, and even expose the
underlying stream being read from. The members of Console are briefly described in the tables below:

Public Properties Description

Error Gets the system's standard error output stream as a TextWriter
object

In Gets the system's standard input stream as a TextReader object

Out Gets the system's standard output stream as a TextWriter object

Public Methods

OpenStandardError() Overloaded. Returns the standard error stream as a Stream object

OpenStandardInput() Overloaded. Returns the standard input stream as a Stream object

OpenStandardOutput() Overloaded. Returns the standard output stream as a Stream object

Read() Reads the next character from the standard input stream

ReadLine() Reads the next line of characters as a string from Console.In,
which is set to the system's standard input stream by default

SetError() Redirects the Error property to use the specified TextWriter
stream.

SetIn() Redirects the In property to use the specified TextReader stream.

SetOut() Redirects the Out property to use the specified TextWriter stream.

Write() Overloaded. Writes the specified information to Console.Out.

WriteLine() Overloaded. Writes information followed by a line terminator to
Console.Out.

All of the Console members are static, so you don't need to (and can't) instantiate a System.Console
object.

Using the powerful methods of the Console class we could write an equivalent of the JavaEcho class
in C# as follows:

class CSEchoer
{
 static void Main(string[] args)
 {
 string userInput = System.Console.ReadLine();
 System.Console.WriteLine ("You said : " + userInput);
 }
}

The above code is much shorter and easier to digest in comparison to its Java counterpart. One useful
thing you'll get with the Console.WriteLine() static method is the ability to use formatted strings.
The flexibility of formatted strings can be illustrated by writing a simple game where user input is used
to generate a story. The code for EchoGame is listed below:

Appendix B

1194

class EchoGame
{
 static void Main(string[] args)
 {
 System.Console.WriteLine("Name of a country?");
 string userInput1 = System.Console.ReadLine();
 System.Console.WriteLine("Name of a young prince?");
 string userInput2 = System.Console.ReadLine();
 System.Console.WriteLine("What was the prince doing?");
 string userInput3 = System.Console.ReadLine();
 System.Console.WriteLine("What did he find while doing this?");
 string userInput4 = System.Console.ReadLine();
 System.Console.WriteLine("Then what did he do?");
 string userInput5 = System.Console.ReadLine();
 System.Console.WriteLine("Once upon a time in"
 + " {0}, there was a young prince {1},\n" +
 "who while {2}, came across a {3}, and then "
 + "{4} ! ", userInput1, userInput2,
 userInput3, userInput4, userInput5);
 }
}

The insertion points are replaced by the supplied arguments starting from the index {0}, which
corresponds to the leftmost variable (in this case userInput1). You are not limited to supplying only
string variables, nor are you confined to using just variables, or even using variables of the same type.
Any type that the method WriteLine() can display may be supplied as an argument including string
literals or actual values. There is also no limit to the number of insertion points that can be added to the
string, as long as it is less than the overall number of arguments. Note that omitting insertion points
from the string will cause the variable not to be displayed. You must, however, have an argument for
each insertion point you specify whose index in the argument list corresponds to the index of the
insertion point. In the following listing for example, removing {1} is fine as long as there are still three
arguments. In this case {0} matches up with strA and {2} matches up with strC:

Console.WriteLine("hello {0} {1} {2}", strA, strB, strC);

Summary
Microsoft describes C# as a simple, modern language derived from C and C++. Because Java is also a
modernization of C++, much of the syntax and inbuilt features present in C# are also available in Java.

C# uses the .NET Framework, and so offers built-in, type safe, object-oriented code that is interoperable
with any language that supports the CTS (Common Type System). Java does offer interoperability with
C and C++, but it is not type safe. Moreover, it is highly complex.

C# namespaces provide a much more flexible way of grouping related classes together. C# filenames
are not bound to the classes within them as they are in Java, nor are namespace names bound to folders
as package names are in Java. C# also provides a rich set of built-in value types including type safe
enumerations, structures, and the inbuilt primitives that offer a robust alternative to Java's primitives.

C# provides bi-directional conversion between reference and value types called boxing and unboxing.
This functionality is not supported in Java. C# supports the use of classes, complete with fields,
constructors, and methods, as a template for describing types, and provides the ability to define
destructors, methods called just before the class is garbage collected. C# also provides three approaches

C# for Java Developers

1195

to method parameters. They may be in, out, or ref with in being the default.

C# also introduces the concept of method hiding, as well as supporting explicit overriding via the
virtual and override keywords, and C# provides properties as an alternative to get() and set()
methods as a way to safely access internal fields.

